More on the Generalized (m,n)-Jordan Derivations and Centralizers on Certain Semiprime Rings


In this paper, we give an affirmative answer to two conjectures on generalized (mn)-Jordan derivations and generalized (mn)-Jordan centralizers raised in Ali and Fošner (Algebra Colloq 21:411–420, 2014) and Fošner (Demonstr Math 46:254–262, 2013). Precisely, when R is a semiprime ring, we prove, under some suitable torsion restrictions, that every nonzero generalized (mn)-Jordan derivation (resp., a generalized (mn)-Jordan centralizer) is a derivation (resp., a two-sided centralizer).

This is a preview of subscription content, access via your institution.


  1. 1.

    Ali, S., Fošner, A.: On generalized \((m, n)\)-derivations and generalized \((m, n)\)-Jordan derivations in rings. Algebra Colloq. 21, 411–420 (2014)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Brešar, M.: Jordan derivations on semiprime rings. Proc. Am. Math. Soc. 104, 1003–1006 (1988)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brešar, M.: On the distance of the composition of two derivations to the generalized derivations. Glasg. Math. J. 33, 89–93 (1991)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brešar, M.: Introduction to noncommutative algebra, Universitext, Springer (2014)

  5. 5.

    Brešar, M., Vukman, J.: Jordan derivations on prime rings. Bull. Aust. Math. Soc. 37, 321–322 (1988)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Benkovič, D., Eremita, D.: Characterizing left centralizers by their action on a polynomial. Publ. Math. Debercen 64, 343–351 (2004)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Cusak, J.: Jordan derivations on rings. Proc. Am. Math. Soc. 53, 321–324 (1975)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fošner, A.: A note on generalized \((m, n)\)-Jordan centralizers. Demonstratio Math. 46, 254–262 (2013)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Herstein, I.N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8, 1104–1119 (1957)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Jing, W., Lu, S.: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwan. J. Math. 7, 605–613 (2003)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kosi-Ulbl, I., Vukman, J.: A note on \((m, n)\)-Jordan derivation of rings and banach algebras. Bull. Aust. Math. Soc. 93, 231–237 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kosi-Ulbl, I., Vukman, J.: On \((m, n)\)-Jordan centralizers of semiprime rings. Publ. Math. Debrecen 7490, 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Lam, T.Y.: A first course in noncommutative rings, Graduate Texts in Mathematics, 123. Springer, New York (1991)

    Google Scholar 

  14. 14.

    Levitzki, J.: Prime ideals and the lower radical. Am. J. Math. 73, 25–29 (1951)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Vukman, J.: An identity related to centralizers in semiprime rings. Comment. Math. Univ. Carolin. 40, 447–456 (1999)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Vukman, J.: Identities with derivations and automorphisms on semiprime rings. Int. J. Math. Math. Sci. 7, 1031–1038 (2005)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Vukman, J.: A note on generalized derivations of semiprime rings. Taiwan. J. Math. 11, 367–370 (2007)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Vukman, J.: On \((m, n)\)-Jordan derivations and commutativity of prime rings. Demons. Math. 41, 773–778 (2008)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Vukman, J.: On \((m, n)\)-Jordan centralizers in rings and algebras. Glasg. Math. J. 45, 43–53 (2010)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zalar, B.: On centralizers of semiprime rings. Comment. Math. Univ. Carolin. 32, 609–614 (1991)

    MathSciNet  MATH  Google Scholar 

Download references


The authors would like to thank the referees for their valuable comments. The results of this paper was presented by the third author in the International Conference on Algebra and its Applications (ICAA-2017) which held in April 2017 at the Faculty of Sciences and Technology, Errachidia, Morocco.

Author information



Corresponding author

Correspondence to Brahim Fahid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Hamid Reza Ebrahimi Vishki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bennis, D., Dhara, B. & Fahid, B. More on the Generalized (m,n)-Jordan Derivations and Centralizers on Certain Semiprime Rings. Bull. Iran. Math. Soc. 47, 217–224 (2021).

Download citation


  • Semiprime ring
  • Generalized (\(\textit{m}, \textit{n}\))-derivation
  • Generalized (\(\textit{m}, \textit{n}\))-Jordan derivation
  • (\(\textit{m}, \textit{n}\))-Jordan centralizer
  • Generalized (\(\textit{m}, \textit{n}\))-Jordan centralizer

Mathematics Subject Classification

  • 16N60
  • 16W25