More Generalizations of Hartfiel’s Inequality and the Brunn–Minkowski Inequality


In this note, we give some other generalizations of Hartfiel’s inequality and the Brunn–Minkowski inequality to sector matrices, the results obtained improve those of Lin (Arch Math 104:93–100, 2015) and Liu (Linear Algebra Appl 508:206–213, 2016).

This is a preview of subscription content, access via your institution.


  1. 1.

    Drury, S., Lin, M.: Singular value inequalities for matrices with numerical ranges in a sector. Oper. Matrices 8, 1143–1148 (2014)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Fan, K.: Some inequalities concerning positive-definite Hermitian matrices. Proc. Camb. Philos. Soc. 51, 414–421 (1955)

    MathSciNet  Article  Google Scholar 

  3. 3.

    George, A., Ikramov, K.H.D.: On the properties of accretive–dissipative matrices. Math. Notes 77, 767–776 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hartfiel, D.J.: An extension of Haynsworth’s determinant inequality. Proc. Amer. Math. Soc. 41, 463–465 (1973)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Haynsworth, E.V.: Applications of an inequality for the Schur complement. Proc. Amer. Math. Soc. 21, 512–516 (1970)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Hou, L., Dong, S.: An extension of Hartfiel’s determinant inequality. Math. Inequal. Appl. 21, 1105–1110 (2018)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  8. 8.

    Ikramov, K.H.D.: Determinantal inequalities for accretive–dissipative matrices. J. Math. Sci. 121, 2458–2464 (2004)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lin, M.: Fischer type determinantal inequalities for accretive–dissipative matrices. Linear Algebra Appl. 438, 2808–2812 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Lin, M.: Extension of a result of Hanynsworth and Hartfiel. Arch. Math. 104, 93–100 (2015)

    Article  Google Scholar 

  11. 11.

    Lin, M.: Some inequalities for sector matrices. Oper. Matrices 10, 915–921 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lin, M., Zhou, D.: Norm inequalities for accretive–dissipative operator matrices. J. Math. Anal. Appl. 407, 436–442 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Liu, J.: Generalizations of the Brunn–Minkowski inequality. Linear Algebra Appl. 508, 206–213 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Yuan, J., Leng, G.: A generalization of the matrix form of the Brunn–Minkowski inequality. J. Aust. Math. Soc. 83, 125–134 (2007)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Zhang, D., Hou, L., Ma, L.: Properties of matrices with numerical ranges in a sector. Bull. Iran. Math. Soc. 43, 1699–1707 (2017)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Zheng, Y., Jiang, X., Chen, X., Alsaadi, F.: More extensions of a determinant inequality of Hartfiel. Linear Algebra Appl. 369, 124827 (2020)

    MathSciNet  MATH  Google Scholar 

Download references


We acknowledge the helpful comments from the referee. The work was supported by National Natural Science Foundation of China (NNSFC) [Grant number 11971294].

Author information



Corresponding author

Correspondence to Sheng Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Abbas Salemi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Wang, QW. More Generalizations of Hartfiel’s Inequality and the Brunn–Minkowski Inequality. Bull. Iran. Math. Soc. 47, 21–29 (2021).

Download citation


  • Hartfiel’s inequality
  • The Brunn–Minkowski inequality
  • Sector matrices

Mathematics Subject Classification

  • 15A45
  • 47A63