Ternary n-Weak Amenability of Certain Commutative Banach Algebras and \(\hbox {JBW}^*\)-Triples


We show that a commutative unital Banach *-algebra is ternary n-weakly amenable when it is n-weakly amenable. We apply this result for a wide variety of commutative n-weakly amenable algebras such as for a convolution group algebra on a discrete abelian group and for a commutative unital \(\hbox {C}^*\)-algebra. We also show that every commutative \(\hbox {JBW}^*\)-triple is ternary n-weakly amenable. These results present a somehow unified extension of the previous ternary weak amenability results in the category of triple systems and n-weak amenability results in the category of Banach algebras.

This is a preview of subscription content, access via your institution.


  1. 1.

    Barootkoob, S., Ebrahimi Vishki, H.R.: Lifting derivations and \(n\)-weak amenability of the second dual of a Banach algebra. Bull. Aust. Math. Soc. 83, 122–129 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Barton, T.J., Timoney, R.M.: Weak\(^*\)-continuity of Jordan triple products and its applications. Math. Scand. 59, 177–191 (1986)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chu, C.-H.: Jordan Structures in Geometry and Analysis. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  4. 4.

    Dales, H.G., Ghahramani, F., Grønbæk, N.: Derivations into iterated duals of Banach algebras. Stud. Math. 128(1), 19–54 (1998)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Haagerup, U.: All nuclear \(\text{ C }^*\)-algebras are amenable. Invent. Math. 74(2), 305–319 (1983)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Haagerup, U., Laustsen, N.J.: Weak Amenability of \(\text{ C }^*\)-algebras and a Theorem of Goldstein, in Banach Algebras ’97 (Blaubeuren), pp. 223–243. de Gruyter, Berlin (1998)

    MATH  Google Scholar 

  7. 7.

    Ho, T., Peralta, A.M., Russo, B.: Ternary weakly amenable \(\text{ C }^*\)-algebras and \(\text{ JB }^*\)-triples. Q. J. Math. 64, 1109–1139 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Horn, G.: Klassifikation der \(\text{ JBW }^*\)-tripel von typ I. Dissertation, Tübingen (1984)

  9. 9.

    Jabbari, A., Moslehian, M.S., Ebrahimi Vishki, H.R.: Constructions preserving \(n\)-weak amenability of Banach algebras. Math. Bohem. 134, 349–357 (2009)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kaup, W., Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z. 157(2), 179–200 (1977)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Khadem-Maboudi, A.A., Ebrahimi Vishki, H.R.: Strong Arens irregularity of bilinear mappings and reflexivity. Banach J. Math. Anal. 6, 155–160 (2012)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Khosravi, A.A., Ebrahimi Vishki, H.R., Peralta, A.M.: Aron–Berner extensions of triple maps with application to the bidual of Jordan Banach triple systems. Linear Algebra Appl. 580, 436–463 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Meyberg, K.: Lecture Notes on Triple Systems. Notes on a Course of Lectures Given During the Academic Year 1971–1972. The University of Virginia, Charlottesville (1972)

    Google Scholar 

  14. 14.

    Mohammadzadeh, S., Ebrahimi Vishki, H.R.: Arens regularity of module actions and the second adjoint of a derivation. Bull. Aust. Math. Soc. 77, 465–476 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Niazi, M., Miri, M.R., Ebrahimi Vishki, H.R.: Ternary weak amenability of bidual of a \(\text{ JB }^*-\)Triple. Banach J. Math. Anal. 11, 676–697 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Russo, B.: Structure of \(\text{ JB }^*\)-triples. In: Kaup, W., McCrimmon, K., Petersson, H. (eds.) Proceedings of the Oberwolfach Conference 1992, Jordan Algebras, pp. 209–280. de Gruyter, Berlin (1994)

    Google Scholar 

  17. 17.

    Zhang, Y.: \(2m\)-Weak amenability of group algebras. J. Math. Anal. Appl. 396(1), 412–416 (2012)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank the anonymous referees for their constructive comments and suggestions.

Author information



Corresponding author

Correspondence to Ali Akbar Khadem-Maboudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Hamid Reza Ebrahimi Vishki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niazi, M., Khadem-Maboudi, A.A. & Miri, M.R. Ternary n-Weak Amenability of Certain Commutative Banach Algebras and \(\hbox {JBW}^*\)-Triples. Bull. Iran. Math. Soc. 46, 1791–1800 (2020). https://doi.org/10.1007/s41980-020-00359-9

Download citation


  • \(\hbox {JB}^*\)-triple
  • Ternary module
  • Ternary derivation
  • n-Weak amenability of Banach algebras
  • Ternary n-weak amenability

Mathematics Subject Classification

  • 17C65
  • 46K70
  • 46H25