Skip to main content
Log in

Weighted Conjugate Gradient-Type Methods for Solving Quadrature Discretization of Fredholm Integral Equations of the First Kind

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

A variant of conjugate gradient-type methods, called weighted conjugate gradient (WCG), is given to solve quadrature discretization of various first-kind Fredholm integral equations with continuous kernels. The WCG-type methods use a new inner product instead of the Euclidean one arising from discretization of \(L^2\)-inner product by the quadrature formula. On this basis, the proposed algorithms generate a sequence of vectors which are approximations of solution at the quadrature points. Numerical experiments on a few model problems are used to illustrate the performance of the new methods compared to the CG-type methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atkinson, K.E.: The numerical solution of integral equations of the second kind. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  2. Bazán, F.S.V., Borges, L.S.: GKB-FP: an algorithm for large-scale discrete ill-posed problems. BIT 50, 481–507 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borges, L.S., Bazán, F.S.V., Cunha, M.C.C.: Automatic stopping rule for iterative methods in discrete ill-posed problems. Comput. Appl. Math. 34, 1175–1197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges, L.S., Bazán, F.S.V., Cunha, M.C.C.: Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization. Numer. Linear. Algebra. 21, 316–339 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Delilloa, T., Hrycak, T.: A stopping rule for the conjugate gradient regularization method applied to inverse problem in Acoustics. J. Comput. Acoust. 14, 397–414 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delves, L.M., Mohmed, J.L.: Computational methods for integral equations. Cambridge University Press, Liverpool (1985)

    Book  Google Scholar 

  7. Dold, A., Eckmann, B.: Iterative methods for the solution of a linear operator equation in Hilbert space. Springer-Verlag, New York (1974)

    Google Scholar 

  8. Fong, D.C.L., Saunders, M.: LSMR: an iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput. 33, 2950–2971 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM. J. Appl. Math. 2, 205–224 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Hämarik, U., Palm, R.: Comparison of stopping rules in conjugate gradient type methods for solving ill-posed problems. Math. Model. Anal. 12, 61–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanke, M.: Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math. 60, 341–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanke, M.: Conjugate gradient type methods for ill-posed problems. Pitman Research Notes in Mathematics, Pitman (1995)

    MATH  Google Scholar 

  13. Hansen, P.C.: Discrete inverse problems: insight and algorithms. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  14. Huang, Y., Jia, Z.: Some results on the regularization of LSQR for large-scale discrete ill-posed problems. Sci. China. Math 60, 701–718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, M., Xia, L., Shou, G., Tang, M.: Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Phys. Med. Biol. 52, 1277–1294 (2007)

    Article  Google Scholar 

  16. Karimi, S., Jozi, M.: A new iterative method for solving linear Fredholm integral equations using the least squares method. Appl. Math. Comput. 250, 744–758 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Kirsch, A.: An introduction to the mathematical theory of inverse problems. Springer, New York (2011)

    Book  MATH  Google Scholar 

  18. Kilmer, M.E., O’leary, D.P.: Choosing regularization parameter in iterative methods for ill-posed problems. SIAM. J. Matrix Anal. Appl 22, 1204–1221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleefeld, A.: Numerical results for linear Fredholm integral equations of the first kind over surfaces in three dimensions. Int. J. Comput. Math. 88, 2728–2742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kress, R.: Linear integral equations, 21st edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  21. Nemirov́ski, A.S., Polyak, B.T.: Iterative methods for solving linear ill-posed problems and precise information I. Eng. Cybern. 22, 43–71 (1982)

    MathSciNet  Google Scholar 

  22. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. JACM 9, 84–97 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithm 63, 65–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saad, Y.: Iterative methods for sparse linear systems. University of Minnesota, Minneapolis (2000)

    Google Scholar 

  26. Tikhonov, A.N.: Regularization of incorrectly posed problems. Sov. Doklady. 4, 1624–1627 (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Andreas Kleefeld for his MATLAB code for discretization of a first-kind integral equations on a surface by boundary element method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karimi.

Additional information

Communicated by M. Hadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, S., Jozi, M. Weighted Conjugate Gradient-Type Methods for Solving Quadrature Discretization of Fredholm Integral Equations of the First Kind. Bull. Iran. Math. Soc. 45, 455–473 (2019). https://doi.org/10.1007/s41980-018-0143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0143-5

Keywords

Mathematics Subject Classification

Navigation