Skip to main content
Log in

Analysis of a Numerical Method for the Solution of Time Fractional Burgers Equation

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Due to the nonlinearity and fractional order of equation, there are a few efficient numerical methods in the literature with stability and convergence analysis for the solution of nonlinear time fractional partial differential equations. The aim of this paper is to construct and analyze an efficient numerical method for the solution of time fractional Burgers equation. The proposed method is based on a finite difference scheme in time and the Chebyshev spectral collocation method in space. We discuss the stability and convergence of the proposed method and show that the method is unconditionally stable and convergent with order \({\mathcal {O}}(\tau ^2+N^{-s})\) where \(\tau \), N, and s are time step size, number of collocation points, and regularity of exact solution, respectively. The numerical results are reported in terms of accuracy, computational order, and CPU time to confirm the efficiency of proposed method. It is illustrated that the numerical results are in good agreement with the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asgari, Z., Hosseini, S.M.: Efficient numerical schemes for the solution of generalized time fractional Burgers type equations. Numer. Algorithm (In press)

  3. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67, 340–349 (2015)

    Google Scholar 

  4. Bhrawy, A.H.: Jacobi sectral cllocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithm 73, 91–113 (2016)

    Article  MATH  Google Scholar 

  5. Bressan, A., Quarteroni, A.: An implicit/explicit spectral method for Burgers equation. Calcolo 23, 265–84 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canuto, C., Quarteroni, A.: Spectral and pseudo-spectral methods for parabolic problems with nonperiodic boundary conditions. Calcolo 18, 197–218 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, A., Du, Q., Li, C., Zhou, Z.: Asymptotically compatible schemes for space-time nonlocal diffusion equations. Chaos Solit. Fract. 102, 361–371 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)

    Article  MathSciNet  Google Scholar 

  12. El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers equation. Appl. Math. Modell. 36, 4557–4564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers equation by cubic B-spline finite elements. Mediterr. J. Math. 13, 1325–1337 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers equation. Acta Univ Sapientiae Mathematica 7, 167–185 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Inc, M.: The approximate and exact solutions of the space- and time-fractional burgers equation with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burger equations: a comparison between generalized transformation technique with homotopy perturbation method. Int. J. Num. Method Heat Fluid Flow 22, 175–93 (2012)

    Article  MathSciNet  Google Scholar 

  17. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  19. Li, C.P., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, 383–406 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Maday, Y., Quarteroni, A.: Legendre and Chebyshev spectral approximations of Burgers equation. Numer. Math. 37, 321–332 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introductionto the Fractional Calculus and Fractional Differential Equations. Academic, New York (1974)

    Google Scholar 

  22. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  23. Podulbny, I.: Fractional Differential Equations. Academic, New York (1999)

    Google Scholar 

  24. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer (1994)

  25. Song, L., Zhang, H.Q.: Application of homotopy analysis method to fractional KDV-Burgers-Kuramoto equation. Phys. Lett. A. 367, 88–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluild Mech. 225, 631–653 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sugimoto, N.: Generalized Burgers equation and fractional calculus. In: Nonlinear Wave Motion, Longman Scientfic and Technical (1989)

  28. Yu, B., Jiang, X., Xu, H.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithm 68, 923–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Company, Singapore (2014)

    Book  Google Scholar 

  30. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, A40–A62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeng, F., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, H., Jiang, X., Yang, X.: A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Appl. Math. Comput. 320, 302–318 (2018)

    MathSciNet  Google Scholar 

  34. Wu, G.C., Baleanu, D.: Variational iteration method for the Burger flow with fractional derivatives-New Lagrange multipliers. Appl. Math. Model. 37, 6183–6190 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, A. Analysis of a Numerical Method for the Solution of Time Fractional Burgers Equation. Bull. Iran. Math. Soc. 44, 457–480 (2018). https://doi.org/10.1007/s41980-018-0031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0031-z

Keywords

Navigation