Bulletin of the Iranian Mathematical Society

, Volume 44, Issue 2, pp 409–415 | Cite as

Furstenberg–Ellis–Namioka Structure Theorem on a CHART Group

  • M. Zaman-Abadi
  • A. Jabbari
Original Paper


For \(E({\mathbb {T}})\) being the endomorphism group of the circle group \({\mathbb {T}}\), the Furstenberg–Ellis–Namioka Structure Theorem of the CHART group \(G=E({\mathbb {T}})\times {\mathbb {T}}\) with the product \((f,u)(g,v)=(fg,uvf\circ g(\mathrm{e}^{i}))\) is known to be equal to \(\{G,1_{\mathbb {T}}\times {\mathbb {T}},\{(1_{\mathbb {T}},1)\}\}\). A somewhat similar group structure is known to exist on \(E({\mathbb {T}})\times E({\mathbb {T}})\times {\mathbb {T}}\), studied by Milnes. We give an explicit characterization of the Furstenberg–Ellis–Namioka Structure Theorem for an admissible subgroup \(\Sigma \) of \(E({\mathbb {T}})\times E({\mathbb {T}})\times {\mathbb {T}}\), where \(\Sigma \) is the Ellis group of the Hahn-type skew product dynamical system on the 3-torus \({\mathbb {T}}^3\).


Compact right topological group Ellis group Furstenberg–Ellis–Namioka structure theorem 

Mathematics Subject Classification




The authors would like to thank the anonymous referee for the kind suggestions. A support from Mahani Mathematical Research Center for the second author is gratefully acknowledged.


  1. 1.
    Ellis, R.: Locally compact transformation groups. Duke Math. J. 24, 119–125 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ellis, R.: The Furstenberg structure theorem. Pac. J. Math. 76, 345–349 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Furstenberg, H.: The structure of distal flows. Am. J. Math. 83, 477–515 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jabbari, A., Namioka, I.: Ellis group and the topological center of the flow generated by the map \(n\mapsto \lambda ^{{n}^{k}}\). Milan J. Math. 78, 503–522 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jabbari, A., Vishki, H.R.E.: Skew product dynamical systems, Ellis groups and topological center. Bull. Aust. Math. Soc. 79, 129–145 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lau, A.T.-M., Loy, R.J.: Banach algebras on compact right topological groups. J. Funct. Anal. 225, 263–300 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 8.
    Moors, W.B.: Invariant means on CHART groups. Khayyam J. Math. 1, 36–44 (2015)MathSciNetzbMATHGoogle Scholar
  8. 9.
    Moors, W.B., Namioka, I.: Furstenberg’s structure theorem via CHART groups. Ergod. Theory Dyn. Syst. 33, 954–968 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 10.
    Moran, A.: Minimal normal systems of compact right topological groups. Math. Proc. Camb. Phil. Soc. 123, 243–258 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 11.
    Namioka, I.: Right topological groups, distal flows and a fixed-point theorem. Math. Syst. Theory 6, 193–209 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 12.
    Rautio, J.: Enveloping semigroups and quasi-discrete spectrum. Ergod. Theory Dyn. Syst. 36, 2627–2660 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of MathematicsKerman Branch, Islamic Azad UniversityKermanIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematics and computerShahid Bahonar University of KermanKermanIran

Personalised recommendations