Skip to main content
Log in

Magnesium – das unterschätzte Mineral

Rolle von Magnesium im Stoffwechsel und praktische Empfehlungen

Magnésium – le minéral sous-estimé

Rôle du magnésium dans le métabolisme et recommandations pratiques

  • Orthomolekulare Medizin
  • Published:
Journal für Gynäkologische Endokrinologie/Schweiz Aims and scope

Zusammenfassung

Neben seiner Funktion als Elektrolyt spielt Magnesium eine entscheidende Rolle im Stoffwechsel. Mehr als 700 Enzymsysteme benötigen Magnesium als Kofaktor. Von zentraler Bedeutung ist das Mineral für den Energiestoffwechsel. Zahlreiche Hormone und Neurotransmitter sowie alle Organe und Gewebe sind zum richtigen Funktionieren auf Magnesium angewiesen. Ein Mangel kann sich folglich in ganz unterschiedlichen Formen manifestieren, was seine Erkennung erschweren kann. Dutzende von Symptomen werden mit einem Magnesiummangel in Verbindung gebracht. Erhebungen lassen vermuten, dass Magnesiummangel in der Bevölkerung weiter verbreitet ist als bislang angenommen. Viele Ursachen können dazu beitragen. Zahlreiche Studien zeigen, dass Magnesium bei der Therapie und Prävention vieler Erkrankungen erfolgreich eingesetzt werden kann. Für einen breiteren Einsatz in der Medizin sprechen die hohe Verträglichkeit, das breite therapeutische Spektrum, die einfache Anwendung, das weitgehende Fehlen von Interaktionen mit Medikamenten, die kurze Halbwertszeit und nicht zuletzt der günstige Preis.

Résumé

En plus de sa fonction d’électrolyte, le magnésium joue un rôle déterminant dans le métabolisme. Plus de 700 enzymes dépendent du magnésium qui leur sert de cofacteur pour fonctionner. Le magnésium est d’une importance primordiale pour le métabolisme lié au système énergétique. Un grand nombre d’hormones et de neurotransmetteurs ainsi que tous les organes et tissus ne fonctionnent qu’en sa présence. Une carence peut se manifester de différentes manières, ce qui rend sa détection difficile dans la plupart des cas. Des douzaines de symptômes peuvent en être à l’origine. Des études basées sur des données collectées par questionnaires suggèrent qu’une carence en magnésium est bien plus répandue que communément admis. Les causes en sont nombreuses. Une multitude d’études démontre l’efficacité thérapeutique et préventive du magnésium dans de nombreuses maladies. Son utilisation plus répandue en médecine s’impose vu sa grande tolérance, son vaste spectre thérapeutique, son utilisation simple, l’absence pratiquement absolue d’interactions médicamenteuses, sa demi-vie courte et notamment, son prix abordable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Rosanoff A (2009) The essential nutrient magnesium—key to Mitochondrial ATP production and much more. https://www.prohealth.com/library/the-essential-nutrient-magnesium-key-to-mitochondrial-atp-production-and-much-more-26273 (Erstellt: 8. Juni 2009)

    Google Scholar 

  2. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475(1–2):113–121

    CAS  PubMed  Google Scholar 

  3. Arigony AL, de Oliveira IM, Machado M et al (2013) The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int. https://doi.org/10.1155/2013/597282

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70(3):153–164

    PubMed  Google Scholar 

  5. Seelig MS (1964) The requirement of magnesium by the normal adult. Am J Clin Nutr 14(6):342–390

    Google Scholar 

  6. Seelig MS (1981) Magnesium requirements in human nutrition. Magnes Bull 3(Suppl 1a):26–47

    Google Scholar 

  7. Graham L, Caesar J, Burger A (1960) Gastointestinal absorption and excretion of Mg 28 in man. Metabolism 9:646–659

    CAS  PubMed  Google Scholar 

  8. Glei M et al (1995) Magnesium content of foodstuffs and beverages and magnesium intake of adults in Germany. Magnes Bull 17:22–28

    CAS  Google Scholar 

  9. Cashman KD, Flynn A (1999) Optimal nutrition: calcium, magnesium and phosphorus. Proc Nutr Soc 58(2):477–487

    CAS  PubMed  Google Scholar 

  10. Ismail Y, Ismail AA, Ismail AA (2010) The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for “normal” results. Clin Chem Lab Med 48(3):323–327

    CAS  PubMed  Google Scholar 

  11. Mircetić RN et al (2001) Magnesium concentration in plasma, leukocytes and urine of children with intermittent asthma. Clin Chim Acta 312(1–2):197–203

    PubMed  Google Scholar 

  12. Mauskop A et al (1993) Deficiency in serum ionized magnesium but not total magnesium in patients with migraines. Possible role of ICa2+/IMg2+ ratio. Headache 33(3):135–138

    CAS  PubMed  Google Scholar 

  13. Altura BM, Altura BT (1996) Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest 56(Suppl. 224):211–234. https://doi.org/10.3109/00365519609088642

    Article  CAS  Google Scholar 

  14. Chazov EI et al (1974) Taurine and electrical activity of the heart. Circ Res 35(Suppl. 3):11–21

    PubMed  Google Scholar 

  15. Bolland MJ et al (2008) Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336(7638):262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bolland MJ et al (2010) Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta analysis. BMJ 341:c3691

    PubMed  PubMed Central  Google Scholar 

  17. Bolland MJ et al (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Woman’s Health Initiative Limited Access Dataset and Meta-Analysis. BMJ 342:d2040

    PubMed  PubMed Central  Google Scholar 

  18. Bolland MJ et al (2013) Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf 4(5):199–210

    PubMed  PubMed Central  Google Scholar 

  19. Nicoll R, Howard JM, Henein MY (2015) A review of the effect of diet on cardiovascular calcification. Int J Mol Sci 16(4):8861–8883

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hruby A, O’Donnell CJ, Jacques PF et al (2014) Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. Jacc Cardiovasc Imaging 7(1):59–69

    PubMed  Google Scholar 

  21. Maier JA, Malpuech-Brugere C, Zimowska W et al (2004) Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta 1689(1):13–21

    CAS  PubMed  Google Scholar 

  22. Labeeuw M et al (1987) Role of magnesium in the physiopathology and treatment of calcium renal lithiasis. Presse Med 16(1):25–27

    CAS  PubMed  Google Scholar 

  23. Massey L (2005) Magnesium therapy for nephrolithiasis. Magnes Res 18(2):123–126

    CAS  PubMed  Google Scholar 

  24. Liao F, Folsom AR, Brancati FL (1998) Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARIC) study. Am Heart J 136(3):480–490

    CAS  PubMed  Google Scholar 

  25. Ford ES (1999) Serum magnesium and ischaemic heart disease: findings from a national sample of US adults. Int J Epidemiol 28(4):645–651

    CAS  PubMed  Google Scholar 

  26. Del Gobbo LC, Imamura F, Wu JH et al (2013) Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 98(1):160–173

    PubMed  PubMed Central  Google Scholar 

  27. Guasch-Ferre M, Bullo M, Estruch R et al (2014) Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. J Nutr 144(1):55–60

    CAS  PubMed  Google Scholar 

  28. Yamori Y, Sagara M, Mizushima S et al (2015) An inverse association between magnesium in 24-h urine and cardiovascular risk factors in middle-aged subjects in 50 CARDIAC Study populations. Hypertens Res 38(3):219–225

    CAS  PubMed  Google Scholar 

  29. Kolte D, Vijayaraghavan K, Khera S et al (2014) Role of magnesium in cardiovascular diseases. Cardiol Rev 22(4):182–192

    PubMed  Google Scholar 

  30. Kisters K et al (1999) Hypomagnesaemia, borderline hypertension and hyperlipidaemia. Magnes Bull 21:31–34

    CAS  Google Scholar 

  31. Resnick LM et al (2000) Factors affecting blood pressure responses to diet: the Vanguard study. Am J Hypertens 13(9):956–965

    CAS  PubMed  Google Scholar 

  32. Rosanoff A, Plesset MR (2013) Oral magnesium supplements decrease high blood pressure (SBP > 155 mm Hg) in hypertensive subjects on anti-hypertensive medications: a targeted meta-analysis. Magnes Res 26(3):93–99

    CAS  PubMed  Google Scholar 

  33. Singh RB et al (1991) Does dietary magnesium modulate blood lipids? Biol Trace Elem Res 30(1):59–64

    CAS  PubMed  Google Scholar 

  34. Corica F et al (1994) Effects of oral magnesium supplementation on plasma lipid concentrations in patients with non-insulin-dependent diabetes mellitus. Magnes Res 7(1):43–47

    CAS  PubMed  Google Scholar 

  35. Durlach J (1996) Commentary on recent epidemiological and clinical advances. Magnes Res 9(2):139–141

    CAS  PubMed  Google Scholar 

  36. King DE et al (2006) Magnesium supplement intake and C‑reactive protein levels in adults. Nutr Res 26(5):193–196

    CAS  Google Scholar 

  37. Shechter M et al (2001) Beneficial antithrombotic effects of the association of pharmacological oral magnesium therapy with aspirin in coronary heart disease patients. Magnes Res 13(4):275–284

    Google Scholar 

  38. Parikka HJ, Toivonen LK (1999) Acute effects of intravenous magnesium on ventricular refractoriness and monophasic action potential duration in humans. Scand Cardiovasc J 33(5):300–305

    CAS  PubMed  Google Scholar 

  39. Thiele R et al (2000) Effect of intravenous magnesium on ventricular tachyarrhythmias associated with acute myocardial infarction. Magnes Res 13(2):111–122

    CAS  PubMed  Google Scholar 

  40. Ceremuzyński L et al (2000) Hypermagnesemia in heart failure with ventricular arrhythmias. Beneficial effects of magnesium supplementation. J Intern Med 247(1):78–86

    PubMed  Google Scholar 

  41. Dyckner T, Wester PO (1984) Magnesium deficiency in congestive heart failure. Acta Pharmacol Toxicol (Copenh) 54(Suppl.s1):119–123

    Google Scholar 

  42. England MR et al (1992) Magnesium administration and dysrhythmias after cardiac surgery. JAMA 268(17):2395–2402

    CAS  PubMed  Google Scholar 

  43. Caspi J et al (1995) Effects of magnesium on myocardial function after coronary artery bypass grafting. Ann Thorac Surg 59(4):942–947

    CAS  PubMed  Google Scholar 

  44. Toraman F et al (2001) Magnesium infusion dramatically decreases the incidence of atrial fibrillation after coronary artery bypass grafting. Ann Thorac Surg 72(4):1256–1262

    CAS  PubMed  Google Scholar 

  45. Teo KK et al (1991) Effects of intravenous magnesium in suspected acute myocardial infarction: overview of randomized trials. BMJ 303(6816):1499–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Teo KK, Yusuf S (1993) Role of magnesium in reducing mortality in acute myocardial infarction. A review of the evidence. Drugs 46(3):347–359

    PubMed  Google Scholar 

  47. Woods KL et al (1992) Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 339(8809):1553–1558

    CAS  PubMed  Google Scholar 

  48. Woods KL, Fletcher S (1994) Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 343(8901):816–819

    CAS  PubMed  Google Scholar 

  49. ISIS-4 Collaboration Group (1995) ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate and intravenous magnesium sulphate in 58’050 patients with suspected acute myocardial infarction. Lancet 345(8951):669–682

    Google Scholar 

  50. Seelig MS (1994) Cardiovascular reactions to stress intensified by magnesium deficit, in Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications: a review. J Am Coll Nutr 13(5):429–446

    CAS  PubMed  Google Scholar 

  51. Chiuve SE, Korngold EC, Januzzi JL Jr. et al (2011) Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr 93(2):253–260

    CAS  PubMed  Google Scholar 

  52. Seelig MS (1982) Prenatal and neonatal mineral deficiencies: magnesium, zinc and chromium. In: Lifshitz F (Hrsg) Clinical disorders in Pedriatic nutrition. Marcel Dekker, N.Y., S 167–196

    Google Scholar 

  53. Seelig MS (1991) Magnesium in pregnancy: special needs for the adolescent mother. J Am Coll Nutr 10:566

    Google Scholar 

  54. Caddel JL (2001) Magnesium deficiency promotes muscle weakness, contribution to the risk of sudden infant death (SIDS) in infants sleeping prone. Magnes Res 14(1–2):39–50

    Google Scholar 

  55. Abraham GE (1982) The calcium controversy. J Appl Nutr 34(2). www.mgwater.com

  56. Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53(3):71–74

    CAS  PubMed  Google Scholar 

  57. Abraham GE, Grewal HA (1990) A total dietary program emphasizing magnesium instead of calcium. Effect on the mineral density of calcaneous bone in postmenopausal women on hormonal therapy. J Reprod Med 35(5):503–507

    CAS  PubMed  Google Scholar 

  58. Seelig MS (1990) Increased magnesium need with use of combined oestrogen and calcium for osteoporosis treatment. Magnes Res 3(3):197–215

    CAS  PubMed  Google Scholar 

  59. Orchard TS, Larson JC, Alghothani N et al (2014) Magnesium intake, bone mineral density, and fractures: results from the Women’s Health Initiative Observational Study. Am J Clin Nutr 99(4):926–933

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Humphries S et al (1999) Low dietary magnesium is associated with insulin resistance in a sample of young, non-diabetic Black Americans. Am J Hypertens 12(8):747–756

    CAS  PubMed  Google Scholar 

  61. Alzaid AA et al (1995) Effects of insulin on plasma magnesium in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 80(4):1376–1381

    CAS  PubMed  Google Scholar 

  62. Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G et al (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 30(3):253–258

    CAS  PubMed  Google Scholar 

  63. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M et al (2016) A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 111:272–282

    CAS  PubMed  Google Scholar 

  64. de Lourdes Lima M et al (1998) The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care 21(5):682–686

    Google Scholar 

  65. Engelen W et al (2000) Are low magnesium levels in type 1 diabetes associated with electromyographical signs of polyneuropathy? Magnes Res 13(3):197–203

    CAS  PubMed  Google Scholar 

  66. Ma E et al (2010) High dietary intake of magnesium may decrease risk of colorectal cancer in Japanese men. J Nutr 140(4):779–785

    CAS  PubMed  Google Scholar 

  67. Wark PA, Lau R, Norat T et al (2012) Magnesium intake and colorectal tumor risk: a case-control study and meta-analysis. Am J Clin Nutr 96(3):622–631

    PubMed  Google Scholar 

  68. Dibaba D, Xun P, Yokota K et al (2015) Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. Br J Cancer 113(11):1615–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A et al (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92(11):2076–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ben Q, Xu M, Ning X et al (2011) Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer 47(13):1928–1937

    PubMed  Google Scholar 

  71. Chari ST, Leibson CL, Rabe KG et al (2008) Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 134(1):95–101

    CAS  PubMed  Google Scholar 

  72. Song S, Wang B, Zhang X et al (2015) Long-term diabetes mellitus is associated with an increased risk of pancreatic cancer: a Meta-analysis. PLoS ONE 10(7):e134321

    PubMed  PubMed Central  Google Scholar 

  73. Batabyal P, Vander Hoorn S, Christophi C et al (2014) Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol 21(7):2453–2462

    PubMed  Google Scholar 

  74. Stolzenberg-Solomon RZ, Graubard BI, Chari S et al (2005) Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294(22):2872–2878

    CAS  PubMed  Google Scholar 

  75. Wolpin BM, Bao Y, Qian ZR et al (2013) Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer. J Natl Cancer Inst 105(14):1027–1035

    PubMed  PubMed Central  Google Scholar 

  76. Evans JM, Donnelly LA, Emslie-Smith AM et al (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305

    PubMed  PubMed Central  Google Scholar 

  77. Lee MS, Hsu CC, Wahlqvist ML et al (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang LW, Li ZS, Zou DW et al (2008) Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol 14(47):7192–7198

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sherwood RA et al (1986) Magnesium and the premenstrual syndrome. Ann Clin Biochem 23(6):667–670

    PubMed  Google Scholar 

  80. Posaci C et al (1994) Plasma copper, zinc and magnesium levels in patients with premenstrual tension syndrome. Acta Obstet Gynecol Scand 73(6):452–455

    CAS  PubMed  Google Scholar 

  81. Muneyvirci-Delale O et al (1998) Sex steroid hormones modulate serum ionized magnesium and calcium levels throughout the menstrual cycle in women. Fertil Steril 69(5):958–962

    CAS  PubMed  Google Scholar 

  82. Werbach M (1995) Premenstrual syndrome: magnesium. Townsend Lett Dr 13:26

    Google Scholar 

  83. Facchinetti F et al (1991) Oral magnesium successfully relieves premenstrual mood changes. Obstet Gynecol Clin North Am 78(2):177–181

    CAS  Google Scholar 

  84. Benassi L et al (1992) Effectiveness of magnesium pidolate in the prophylactic treatment of primary dysmenorrhea. Clin Exp Obstet Gynecol 19(3):176–179

    CAS  PubMed  Google Scholar 

  85. Fontana-Klaiber H, Hogg B (1990) Therapeutische Wirkung von Magnesium bei Dysmenorroe. Schweiz Rundsch Med Prax 79(16):491–494

    CAS  PubMed  Google Scholar 

  86. Seifert B et al (1989) Magnesium – a new therapeutic alternative in primary dysmenorrhea. Zentralbl Gynakol 111(11):755–760

    CAS  PubMed  Google Scholar 

  87. Goldberg B (1998) Alternative medicine guide: women’s health series 1. Future Medicine Publishing, Tiburon

    Google Scholar 

  88. Edorh AP et al (2003) Magnesium content in seminal fluid as an indicator of chronic prostatitis. Cell Mol Biol 49:419–423

    Google Scholar 

  89. Seelig MS (1994) Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications: a review. J Am Coll Nutr 13(5):429–446. www.mgwater.com

    CAS  PubMed  Google Scholar 

  90. Conradt A, Weidinger AH (1982) The central position of magnesium in the management of fetal hypotrophy—a contribution to the pathomechanism of utero-placental insufficiency, prematurity and poor intrauterine fetal growth as well as pre-eclampsia. Magnes Bull 4:103–124

    Google Scholar 

  91. Handwerker SM et al (1993) Ionized serum magnesium levels in umbilical cord blood of normal pregnant women at delivery: relationship to calcium, demographics and birthweight. Am J Perinatol 10(5):392–397

    CAS  PubMed  Google Scholar 

  92. Handwerker SM, Altura BT, Altura BM (1996) Serum ionized magnesium and other electrolytes in the antenatal period of human pregnancy. J Am Coll Nutr 15(1):36–43

    CAS  PubMed  Google Scholar 

  93. Almonte RA et al (1999) Gestational magnesium deficiency is deleterious to fetal outcome. Biol Neonate 76(1):26–32

    CAS  PubMed  Google Scholar 

  94. Peikert A, Wilimzig C, Köhne-Volland R (1996) Prophylaxis of migraine with oral magnesium: results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalagia 16(4):257–263

    CAS  Google Scholar 

  95. Chiu HY, Yeh TH, Huang YC et al (2016) Effects of intravenous and oral magnesium on reducing migraine: a Meta-analysis of randomized controlled trials. Pain Physician 19(1):E97–E112

    PubMed  Google Scholar 

  96. Mauskop A, Varughese J (2012) Why all migraine patients should be treated with magnesium. J Neural Transm (vienna) 119(5):575–579

    CAS  Google Scholar 

  97. Talebi M, Savadi-Oskouei D, Farhoudi M et al (2011) Relation between serum magnesium level and migraine attacks. Neurosciences (Riyadh) 16(4):320–323

    Google Scholar 

  98. Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644

    PubMed  Google Scholar 

  99. Sun-Edelstein C, Mauskop A (2009) Role of magnesium in the pathogenesis and treatment of migraine. Expert Rev Neurother 9(3):369–379

    CAS  PubMed  Google Scholar 

  100. Mauskop A et al (1995) Intravenous magnesium sulfate relieves cluster headache in patients with low serum ionized magnesium levels. Headache 35(10):597–600

    CAS  PubMed  Google Scholar 

  101. Werbach MR (1995) Nutritional influences on aggressive behavior. J Orthomol Med 7(1):45–51

    Google Scholar 

  102. Cox RH, Shealy CN et al (1996) Significant magnesium deficiency in depression. J Neur Orth Med Surg 17:7–9

    Google Scholar 

  103. Seelig MS (1998) Review and hypothesis: might patients with the chronic fatigue syndrome have latent tetany of magnesium deficiency. J Chronic Fatigue Syndr 4(2):77–108

    Google Scholar 

  104. Cox IM et al (1991) Red blood cell magnesium and chronic fatigue syndrome. Lancet 337(8744):757–760

    CAS  PubMed  Google Scholar 

  105. Vink R, Nechifor M (2011) Magnesium in the central nervous system. University of Adelaide Press, Adelaide

    Google Scholar 

  106. Gröber U, Kisters K (2017) Arzneimittel als Mikronährstoffräuber, 2. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  107. Andersen G (2011) Lebensmitteltabelle für die Praxis, 5. Aufl. Der kleine Souci/Fachmann/Kraut. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Stegmann.

Ethics declarations

Interessenkonflikt

R. Stegmann gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegmann, R. Magnesium – das unterschätzte Mineral. J. Gynäkol. Endokrinol. CH 22, 71–82 (2019). https://doi.org/10.1007/s41975-019-0092-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41975-019-0092-2

Schlüsselwörter

Mots clés

Navigation