Fetale Programmierung – von der Epidemiologie zur Epigenetik

Originalien
  • 38 Downloads

Zusammenfassung

Das Konzept der fetalen Programmierung besagt, dass Umweltfaktoren, welche in der Embryonal- und Fetalzeit auf einen Organismus einwirken, weitreichende Folgen für den Gesundheitszustand im späteren Leben haben können. Wurde die fetale Programmierung anfangs vor allem mittels epidemiologischer Studien erforscht, gibt es mittlerweile auch viele experimentelle Arbeiten, die sich dem besseren Verständnis dieses biologischen Phänomens widmen. Es konnte gezeigt werden, dass eine Vielzahl an umweltbedingten Faktoren, wie zum Beispiel Ernährung, Stress, Schadstoffbelastung u. v. m., während der Gestation fetal programmierende Effekte entfalten kann. Neuere Studien deuten darauf hin, dass maternale Genvarianten ohne deren Vererbung den Phänotyp der Nachkommen im Sinne des Konzepts der fetalen Programmierung beeinflussen können. Darüber hinaus mehren sich die Hinweise, dass auch dem Vater eine relevante Rolle in der fetalen Programmierung zukommt. In den letzten Jahrzehnten konnten bezüglich der zugrunde liegenden Mechanismen der fetalen Programmierung viele neue Erkenntnisse gewonnen werden. Man geht inzwischen davon aus, dass epigenetische Mechanismen, also meiotisch bzw. mitotisch vererbbare Veränderungen der Genexpression, die nicht in der DNA selbst codiert sind, eine zentrale Rolle spielen. Viele Aspekte dieses noch recht jungen Forschungsgebiets sind jedoch bisher weiterhin wenig aufgeklärt, so zum Beispiel geschlechtsspezifische Unterschiede in der fetalen Programmierung.

Schlüsselwörter

Fetale Programmierung Ernährung Epigenetik Nicht-Mendelsche Vererbung Paternal Geschlechtsunterschiede 

Fetal Programming – from Epidemiology to Epigenetics

Abstract

The fetal programming hypothesis states that environmental factors affecting an organism during embryonic and fetal development can alter its phenotype and susceptibility to disease in later life. First observations regarding fetal programming originated from epidemiological studies. There is now a considerable amount of experimental evidence that substantiated previous epidemiological findings and led to a better understanding of this biological phenomenon. It has been demonstrated that a variety of gestational environmental factors, such as nutrition, stress, pollution levels, etc., can result in fetal programming of phenotypic alterations in the offspring. Recent studies indicate that maternal genetic variants can influence the phenotype of the offspring without their inheritance through mechanisms of fetal programming. Furthermore, there is increasing scientific evidence that the father also plays a significant role in the developmental programming of his offspring. Many new insights into the underlying processes have been gained in recent decades and current evidence highlights that epigenetic mechanisms are vitally important in fetal programming. However, many aspects of this relatively novel scientific field of research remain poorly understood, such as sex-specific differences in fetal programming.

Keywords

Fetal programming Nutrition Epigenetics Non-Mendelian inheritance Paternal Sex differences 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Reichetzeder gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Plagemann A (2008) Weichenstellung im Mutterleib: Über perinatale Programmierung und künftige Präventivmedizin. Humboldt Spektrum 15:4Google Scholar
  2. 2.
    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580CrossRefPubMedGoogle Scholar
  3. 3.
    Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. Br Med J 303:1019CrossRefGoogle Scholar
  4. 4.
    Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull 60:5CrossRefPubMedGoogle Scholar
  5. 5.
    Ravelli ACJ, van der Meulen JH, Michels RPJ, Osmond C, Barker DJP, Hales CN et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177CrossRefPubMedGoogle Scholar
  6. 6.
    Schulz LC (2010) The Dutch hunger winter and the developmental origins of health and disease. Proc Natl Acad Sci USA 107:16757–16758CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hanson MA, Gluckman PD (2014) Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94:1027–1076CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reichetzeder C, Dwi Putra SE, Li J, Hocher B (2016) Developmental origins of disease – crisis precipitates change. Cell Physiol Biochem 39:919–938CrossRefPubMedGoogle Scholar
  9. 9.
    Armstrong L (2013) Epigenetics. Garland Science, New YorkGoogle Scholar
  10. 10.
    Sperling K (2008) Die Bedeutung der Epigenese für das Verständnis der Pathogenese aus humangenetischer Sicht. J Verbr Lebensm 3(Suppl 1):9–17.  https://doi.org/10.1007/s00003-007-0312-6 CrossRefGoogle Scholar
  11. 11.
    Czyz W, Morahan JM, Ebers GC, Ramagopalan SV (2012) Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 10:93CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yamada L, Chong S (2017) Epigenetic studies in developmental origins of health and disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 8:30–43CrossRefPubMedGoogle Scholar
  13. 13.
    Laguna-Barraza R, Bermejo-Álvarez P, Ramos-Ibeas P, de Frutos C, López-Cardona AP, Calle A et al (2012) Sex-specific embryonic origin of postnatal phenotypic variability. Reprod Fertil Dev 25:38–47CrossRefPubMedGoogle Scholar
  14. 14.
    Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Nutrients 6:2165–2178CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fernandez-Twinn DS, Constância M, Ozanne SE (2015) Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol 43:85–95CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Benyshek DC, Johnston CS, Martin JF (2006) Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 49:1117–1119CrossRefPubMedGoogle Scholar
  17. 17.
    Hocher B, Slowinski T, Bauer C, Halle H (2001) The advanced fetal programming hypothesis. Nephrol Dial Transplant 16:1298–1299CrossRefPubMedGoogle Scholar
  18. 18.
    Hocher B (2014) More than genes: the advanced fetal programming hypothesis. J Reprod Immunol 104–105:8–11CrossRefPubMedGoogle Scholar
  19. 19.
    Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H (2000) Association of maternal G protein beta3 subunit 825 T allele with low birthweight. Lancet 355:1241–1242CrossRefPubMedGoogle Scholar
  20. 20.
    Masuda K, Osada H, Iitsuka Y, Seki K, Sekiya S (2002) Positive association of maternal G protein beta3 subunit 825 T allele with reduced head circumference at birth. Pediatr Res 52:687–691PubMedGoogle Scholar
  21. 21.
    Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G et al (2002) Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA 287:195–202CrossRefPubMedGoogle Scholar
  22. 22.
    Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V (2015) Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis 30:7–24CrossRefPubMedGoogle Scholar
  23. 23.
    van Beynum IM, Kapusta L, den Heijer M, Vermeulen SHHM, Kouwenberg M, Daniëls O et al (2006) Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J 27:981–987CrossRefPubMedGoogle Scholar
  24. 24.
    Cohen IL, Liu X, Lewis MES, Chudley A, Forster-Gibson C, Gonzalez M et al (2011) Autism severity is associated with child and maternal MAOA genotypes. Clin Genet 79:355–362CrossRefPubMedGoogle Scholar
  25. 25.
    Miodovnik A, Diplas AI, Chen J, Zhu C, Engel SM, Wolff MS (2012) Polymorphisms in the maternal sex steroid pathway are associated with behavior problems in male offspring. Psychiatr Genet 22:115–122CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL (2012) Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension 60:231–238CrossRefPubMedGoogle Scholar
  27. 27.
    Hocher B, Haumann H, Rahnenführer J, Reichetzeder C, Kalk P, Pfab T et al (2016) Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner. Epigenetics 11:539–552CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen Y‑P, Xiao X‑M, Li J, Reichetzeder C, Wang Z‑N, Hocher B (2012) Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS ONE 7:e36329CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li J, Tsuprykov O, Yang X, Hocher B (2016) Paternal programming of offspring cardiometabolic diseases in later life. J Hypertens 34:2111–2126CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG (2006) Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22:327–331CrossRefPubMedGoogle Scholar
  31. 31.
    Ng S‑F, Lin RCY, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β‑cell dysfunction in female rat offspring. Nature 467:963–966CrossRefPubMedGoogle Scholar
  32. 32.
    Bakke JL, Lawrence NL, Robinson S, Bennett J (1976) Observations on the untreated progeny of hypothyroid male rats. Metabolism 25:437–444CrossRefPubMedGoogle Scholar
  33. 33.
    Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136:3647–3655CrossRefPubMedGoogle Scholar
  35. 35.
    Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469CrossRefPubMedGoogle Scholar
  36. 36.
    Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA (2013) Reproductive medicine network. The presence, role and clinical use of spermatozoal RNas. Hum Reprod Update 19:604–624CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yan W (2014) Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol Cell Endocrinol 398:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liebers R, Rassoulzadegan M, Lyko F (2014) Epigenetic regulation by heritable RNA. Plos Genet 10:e1004296CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400CrossRefPubMedGoogle Scholar
  40. 40.
    Cheong JN, Wlodek ME, Moritz KM, Cuffe JSM (2016) Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 594:4727–4740CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT (2014) Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod 20:810–819CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ober C, Loisel DA, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9:911–922CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A (2011) Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141:563–570CrossRefPubMedGoogle Scholar
  44. 44.
    Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4:5CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A (2010) Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci USA 107:3394–3399CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hocher B, Schlemm L, Haumann H, Jian L, Rahnenführer J, Guthmann F et al (2011) Offspring sex determines the impact of the maternal ACE I/D polymorphism on maternal glycaemic control during the last weeks of pregnancy. J Renin Angiotensin Aldosterone Syst 12:254–261CrossRefPubMedGoogle Scholar
  47. 47.
    Hocher B, Chen Y‑P, Schlemm L, Burdack A, Li J, Halle H et al (2009) Fetal sex determines the impact of maternal PROGINS progesterone receptor polymorphism on maternal physiology during pregnancy. Pharmacogenet Genomics 19:710–718CrossRefPubMedGoogle Scholar
  48. 48.
    Hocher B, Schlemm L, Haumann H, Poralla C, Chen Y‑P, Li J et al (2010) Interaction of maternal peroxisome proliferator-activated receptor gamma2 Pro12Ala polymorphism with fetal sex affects maternal glycemic control during pregnancy. Pharmacogenet Genomics 20:139–142CrossRefPubMedGoogle Scholar
  49. 49.
    Tarrade A, Panchenko P, Junien C, Gabory A (2015) Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 218:50–58CrossRefPubMedGoogle Scholar
  50. 50.
    Review CVL (2010) Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31(Suppl):S33–S39Google Scholar
  51. 51.
    Maric C (2007) Mechanisms of fetal programming of adult hypertension: role of sex hormones. Hypertension 50:605–606CrossRefPubMedGoogle Scholar
  52. 52.
    Ojeda NB, Grigore D, Yanes LL, Iliescu R, Robertson EB, Zhang H et al (2007) Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 292:R758–763CrossRefPubMedGoogle Scholar
  53. 53.
    Ojeda NB, Grigore D, Robertson EB, Alexander BT (2007) Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension 50:679–685CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tomat AL, Salazar FJ (2014) Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences. Horm Mol Biol Clin Investig 18:63–77PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für ErnährungswissenschaftUniversität PotsdamNuthetalDeutschland

Personalised recommendations