Skip to main content
Log in

Störungen des Phosphathaushalts

Phosphate metabolism disorders

  • Originalien
  • Published:
Journal für Klinische Endokrinologie und Stoffwechsel Aims and scope

Zusammenfassung

Der Serumphosphatspiegel wird in engen Grenzen durch Vitamin D, Parathormon und fibroblast growth factor-23 (FGF-23) reguliert. Von zentraler Bedeutung dabei ist die Phosphatrückresorption in proximalen Tubulusepithelien durch die Transporter NPT2a und c. Störungen der hormonellen Regulation oder der Transporter können sowohl eine Hypo- als auch eine Hyperphosphatämie verursachen. Zusätzlich können Verschiebungen zwischen intra- und extrazellulärem Raum sowie niedrige oder hohe intestinale Phosphataufnahme Änderungen des Serumphosphats bewirken. Eine schwere Hypophosphatämie führt zur zellulären Energiedepletion mit entsprechenden Symptomen. Die Therapie erfolgt üblicherweise durch orale Zufuhr. Eine parenterale Phosphatgabe sollte schweren Fällen vorbehalten und engmaschig überwacht werden. Eine schwere Hyperphosphatämie kann bei massiver Zytolyse oder exzessiver intestinaler Aufnahme entstehen. Die Symptome erklären sich durch eine konsekutive Hypokalzämie. Eine weitere gefürchtete Komplikation ist die akute Phosphatnephropathie mit Nierenversagen. Die schwere Hyperphosphatämie wird rasch und effektiv mittels Hämodialyse behandelt. Rezente Daten legen nahe, dass hochnormale Phosphatwerte mit einem erhöhten kardiovaskulären Risiko assoziiert sind.

Abstract

Serum phosphate levels are tightly regulated by vitamin D, parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23). In particular PTH and FGF-23 decrease renal phosphate reabsorption by proximal tubular epithelial cells via phosphate transporters NPT2a and c. Disturbances of hormone regulation or carrier function may cause hypo- or hyperphosphatemia. In addition, phosphate shifts between the intracellular and extracellular space or decreased or increased gastrointestinal phosphate uptake may cause these disturbances. Severe hypophosphatemia causes energy depletion of cells with consecutive symptoms. Hypophosphatemia is treated by oral phosphate supplementation. Intravenous phosphate therapy should be restricted to symptomatic cases. Severe hyperphosphatemia may occur with massive cytolysis or ingestion of excessive amounts of phosphate. Complications include hypocalcemia and renal failure due to acute phosphate nephropathy. If necessary, severe hyperphosphatemia needs to be treated by hemodialysis. Recent evidence suggests that high normal phosphate levels may be associated with increased cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C et al (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20(11):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2(7929):309–310

    Article  CAS  PubMed  Google Scholar 

  3. Prie D, Urena Torres P, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75(9):882–889

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90(3):1519–1524

    Article  CAS  PubMed  Google Scholar 

  5. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Article  CAS  PubMed  Google Scholar 

  6. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R et al (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297(2):F282–F291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6(4):207–217

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH et al (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N et al (2005) A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 90(10):5523–5527

    Article  CAS  PubMed  Google Scholar 

  10. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M et al (2004) Mutations in GALNT3, encoding a protein involved in O‑linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36(6):579–581

    Article  CAS  PubMed  Google Scholar 

  11. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98(11):6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prie D, Friedlander G (2010) Genetic disorders of renal phosphate transport. N Engl J Med 362(25):2399–2409

    Article  CAS  PubMed  Google Scholar 

  13. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG (2009) FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 94(7):2332–2337

    Article  CAS  PubMed  Google Scholar 

  14. Sato K, Shiraki M (1998) Saccharated ferric oxide-induced osteomalacia in Japan: iron-induced osteopathy due to nephropathy. Endocr J 45(4):431–439

    Article  CAS  PubMed  Google Scholar 

  15. Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol 21(9):1427–1435

    Article  CAS  PubMed  Google Scholar 

  16. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18(9):2600–2608

    Article  CAS  PubMed  Google Scholar 

  17. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218

    Article  CAS  PubMed  Google Scholar 

  18. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Travis SF, Sugerman HJ, Ruberg RL, Dudrick SJ, Delivoria-Papadopoulos M, Miller LD et al (1971) Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N Engl J Med 285(14):763–768

    Article  CAS  PubMed  Google Scholar 

  21. Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27(4):392–401

    Article  PubMed  Google Scholar 

  22. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111(5):607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor BE, Huey WY, Buchman TG, Boyle WA, Coopersmith CM (2004) Treatment of hypophosphatemia using a protocol based on patient weight and serum phosphorus level in a surgical intensive care unit. J Am Coll Surg 198(2):198–204

    Article  PubMed  Google Scholar 

  24. Subramanian R, Khardori R (2000) Severe hypophosphatemia. Pathophysiologic implications, clinical presentations, and treatment. Medicine (Baltimore) 79(1):1–8

    Article  CAS  Google Scholar 

  25. Carpenter TO, Whyte MP, Imel EA, Boot AM, Hogler W, Linglart A et al (2018) Burosumab therapy in children with X‑linked hypophosphatemia. N Engl J Med 378(21):1987–1998

    Article  CAS  PubMed  Google Scholar 

  26. Beloosesky Y, Grinblat J, Weiss A, Grosman B, Gafter U, Chagnac A (2003) Electrolyte disorders following oral sodium phosphate administration for bowel cleansing in elderly patients. Arch Intern Med 163(7):803–808

    Article  PubMed  Google Scholar 

  27. Markowitz GS, Stokes MB, Radhakrishnan J, D’Agati VD (2005) Acute phosphate nephropathy following oral sodium phosphate bowel purgative: an underrecognized cause of chronic renal failure. J Am Soc Nephrol 16(11):3389–3396

    Article  CAS  PubMed  Google Scholar 

  28. Heher EC, Thier SO, Rennke H, Humphreys BD (2008) Adverse renal and metabolic effects associated with oral sodium phosphate bowel preparation. Clin J Am Soc Nephrol 3(5):1494–1503

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML et al (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120(18):1784–1792

    Article  CAS  PubMed  Google Scholar 

  30. Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA (2009) Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol 20(2):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB Sr., Gaziano JM et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167(9):879–885

    Article  CAS  PubMed  Google Scholar 

  32. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152(10):640–648

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Lhotta.

Ethics declarations

Interessenkonflikt

K. Lhotta gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Aktualisierung von: Lhotta K (2011) Störungen des Phosphathaushaltes. J Klin Endokrinol Stoffw 4(4):20–23

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lhotta, K. Störungen des Phosphathaushalts. J. Klin. Endokrinol. Stoffw. 12, 7–13 (2019). https://doi.org/10.1007/s41969-019-0054-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41969-019-0054-y

Schlüsselwörter

Keywords

Navigation