Abstract
Supercapacitors are electrochemical energy storage systems that depend on high-surface-area electrodes and can play a dominant role in areas that require high power delivery or uptake. And of various electrodes, biomass-derived carbonaceous electrodes have recently shown impressive promise in high-performance supercapacitors because of their widespread availability, renewable nature and low-cost electricity storage. Based on this, this review will discuss the current status of biomass-derived carbon materials in supercapacitors and highlight current research with a specific emphasis on the influences of structure and elemental doping on the electrochemical performance of corresponding carbon electrodes. This review will also discuss the gap between laboratory achievements and practical utilization in terms of these biomass-derived carbon materials and outline practical strategies for future improvement.
Graphic Abstract

This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.













References
- 1.
Jiang, Y.Q., Liu, J.P.: Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028
- 2.
Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- 3.
Béguin, F., Presser, V., Balducci, A., et al.: Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014). https://doi.org/10.1002/adma.201304137
- 4.
Gong, Y.N., Li, D.L., Luo, C.Z., et al.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017). https://doi.org/10.1039/c7gc01681f
- 5.
Wang, F.X., Wu, X.W., Yuan, X.H., et al.: Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/c7cs00205j
- 6.
Bi, Z.H., Kong, Q.Q., Cao, Y.F., et al.: Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7, 16028–16045 (2019). https://doi.org/10.1039/c9ta04436a
- 7.
Bonaccorso, F., Colombo, L., Yu, G.H., et al.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
- 8.
Li, B., Dai, F., Xiao, Q.F., et al.: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016). https://doi.org/10.1039/c5ee03149d
- 9.
Chen, Y.Z., Pang, W.K., Bai, H.H., et al.: Enhanced structural stability of nickel–cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429–436 (2017). https://doi.org/10.1021/acs.nanolett.6b04427
- 10.
Chen, Y.Z., Zhou, T.F., Li, L., et al.: Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13, 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005
- 11.
Chen, Y.Z., Zhou, T.F., Liu, Y.N., et al.: In situ formation of a carbon fiber@Ni3S2 non-woven electrode with ultrahigh areal and volumetric capacitance. J. Mater. Chem. A 5, 23476–23480 (2017). https://doi.org/10.1039/c7ta08802g
- 12.
Sevilla, M., Mokaya, R.: Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014). https://doi.org/10.1039/c3ee43525c
- 13.
Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d
- 14.
González, A., Goikolea, E., Barrena, J.A., et al.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249
- 15.
Tian, W.J., Zhang, H.Y., Sun, H.Q., et al.: Porous carbon: heteroatom (N or N–S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv. Funct. Mater. 26, 8651–8661 (2016). https://doi.org/10.1002/adfm.201670311
- 16.
Gao, X., Liu, H.B., Wang, D., et al.: Graphdiyne: synthesis, properties, and applications. Chem. Soc. Rev. 48, 908–936 (2019). https://doi.org/10.1039/c8cs00773j
- 17.
Pampel, J., Mehmood, A., Antonietti, M., et al.: Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons. Mater. Horiz. 4, 493–501 (2017). https://doi.org/10.1039/c6mh00592f
- 18.
Chen, Q., Tan, X.F., Liu, Y.G., et al.: Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 8, 5773–5811 (2020). https://doi.org/10.1039/c9ta11618d
- 19.
Long, W., Fang, B.Z., Ignaszak, A., et al.: Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 46, 7176–7190 (2017). https://doi.org/10.1039/c6cs00639f
- 20.
Wang, C., Xiong, Y., Wang, H.W., et al.: Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J. Mater. Chem. A 5, 15759–15770 (2017). https://doi.org/10.1039/c7ta04178k
- 21.
Yin, H.Y., Lu, B.H., Xu, Y., et al.: Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ. Sci. Technol. 48, 8101–8108 (2014). https://doi.org/10.1021/es501739v
- 22.
Wang, Z.H., Shen, D.K., Wu, C.F., et al.: State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 20, 5031–5057 (2018). https://doi.org/10.1039/c8gc01748d
- 23.
Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J. Power Sources 387, 81–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061
- 24.
Zhou, J.Q., Wang, M., Li, X.: Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Appl. Surf. Sci. 462, 444–452 (2018). https://doi.org/10.1016/j.apsusc.2018.08.158
- 25.
Liu, T., Zhang, F., Song, Y., et al.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j
- 26.
Wang, J.S., Zhang, X., Li, Z., et al.: Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020). https://doi.org/10.1016/j.jpowsour.2020.227794
- 27.
Chmiola, J., Yushin, G., Gogotsi, Y., et al.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
- 28.
Béguin, F., Presser, V., Balducci, A., et al.: Challenges and opportunities in graphene commercialization. Adv. Mater. 26, 2219–2251 (2014)
- 29.
Jin, J.T., Qiao, X.C., Zhou, F., et al.: Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. Inter. 9, 17317–17325 (2017). https://doi.org/10.1021/acsami.7b00617
- 30.
Zhao, Z., Liu, S.L., Zhu, J.X., et al.: Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Inter. 10, 19871–19880 (2018). https://doi.org/10.1021/acsami.8b03431
- 31.
Jiang, L.L., Sheng, L.Z., Fan, Z.J.: Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 61, 133–158 (2018). https://doi.org/10.1007/s40843-017-9169-4
- 32.
Zheng, Y., Zhou, T., Zhang, C., et al.: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- 33.
Falco, C., Baccile, N., Titirici, M.M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13, 3273–3281 (2011). https://doi.org/10.1039/c1gc15742f
- 34.
Gaddam, R.R., Yang, D., Narayan, R., et al.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016). https://doi.org/10.1016/j.nanoen.2016.05.047
- 35.
Yan, D., Yu, C.Y., Zhang, X.J., et al.: Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 191, 385–391 (2016). https://doi.org/10.1016/j.electacta.2016.01.105
- 36.
Wang, T., Liu, X.Q., Ma, C.C., et al.: A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core–shell non-metallic photocatalysts. New J. Chem. 42, 6515–6524 (2018). https://doi.org/10.1039/c8nj00953h
- 37.
Liang, X., Wen, Z.Y., Liu, Y., et al.: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 196, 3655–3658 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.052
- 38.
Zhang, S., Yao, F., Yang, L., et al.: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries. Carbon 93, 143–150 (2015)
- 39.
Liu, S.M., Cai, Y.J., Zhao, X., et al.: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J. Power Sources 360, 373–382 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.029
- 40.
Liu, S.B., Zhao, Y., Zhang, B.H., et al.: Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J. Power Sources 381, 116–126 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.014
- 41.
Duan, B., Gao, X., Yao, X., et al.: Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). https://doi.org/10.1016/j.nanoen.2016.07.034
- 42.
Tang, K., White, R.J., Mu, X.K., et al.: Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem 5, 400–403 (2012). https://doi.org/10.1002/cssc.201100609
- 43.
Wei, X.J., Li, Y.B., Gao, S.Y.: Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J. Mater. Chem. A 5, 181–188 (2017). https://doi.org/10.1039/c6ta07826e
- 44.
Meng, W.X., Bai, X., Wang, B.Y., et al.: Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2, 172–192 (2019). https://doi.org/10.1002/eem2.12038
- 45.
Hoang, V.C., Gomes, V.G.: High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Mater. Today Energy 12, 198–207 (2019). https://doi.org/10.1016/j.mtener.2019.01.013
- 46.
Wang, T., Zang, X.B., Wang, X., et al.: Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater. 30, 367–384 (2020). https://doi.org/10.1016/j.ensm.2020.04.044
- 47.
Ogale, A.A., Zhang, M., Jin, J.: Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 133, 43794 (2016). https://doi.org/10.1002/app.43794
- 48.
Moon, R.J., Martini, A., Nairn, J., et al.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
- 49.
Wei, Q.L., Xiong, F.Y., Tan, S.S., et al.: Energy storage: Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017). https://doi.org/10.1002/adma.201770134
- 50.
Li, S.H., Huang, D.K., Yang, J.C., et al.: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004
- 51.
Zhang, Z., Mu, S.C., Zhang, B.W., et al.: A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. J. Mater. Chem. A 4, 2137–2146 (2016). https://doi.org/10.1039/c5ta09631f
- 52.
Jin, Z., Yan, X.D., Yu, Y.H., et al.: Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2, 11706–11715 (2014). https://doi.org/10.1039/c4ta01413h
- 53.
Hao, X.D., Wang, J., Ding, B., et al.: Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J. Power Sources 352, 34–41 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.088
- 54.
Liu, Y., Shi, Z.J., Gao, Y.F., et al.: Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl. Mater. Inter. 8, 28283–28290 (2016). https://doi.org/10.1021/acsami.5b11558
- 55.
Li, Y.J., Wang, G.L., Wei, T., et al.: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)
- 56.
Chen, W.S., Yu, H.P., Lee, S.Y., et al.: Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872 (2018). https://doi.org/10.1039/c7cs00790f
- 57.
Cai, J., Niu, H.T., Li, Z.Y., et al.: High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Inter. 7, 14946–14953 (2015). https://doi.org/10.1021/acsami.5b03757
- 58.
Kuzmenko, V., Naboka, O., Gatenholm, P., et al.: Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon 67, 694–703 (2014). https://doi.org/10.1016/j.carbon.2013.10.061
- 59.
Berenguer, R., García-Mateos, F.J., Ruiz-Rosas, R., et al.: Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem. 18, 1506–1515 (2016). https://doi.org/10.1039/c5gc02409a
- 60.
Li, M., Xiao, H., Zhang, T., et al.: Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustainable Chem. Eng. 7, 4716–4723 (2019)
- 61.
Dong, Y.H., Wang, W.X., Quan, H.Y., et al.: Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors. ChemElectroChem 3, 814–821 (2016). https://doi.org/10.1002/celc.201500519
- 62.
Cao, Y.F., Xie, L.J., Sun, G.H., et al.: Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain. Energy Fuels 2, 455–465 (2018). https://doi.org/10.1039/c7se00481h
- 63.
Sakurada, I., Nukushina, Y., Ito, T.: Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (1962). https://doi.org/10.1002/pol.1962.1205716551
- 64.
Xie, L.J., Sun, G.H., Su, F.Y., et al.: Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4, 1637–1646 (2016). https://doi.org/10.1039/c5ta09043a
- 65.
Wang, H., Yi, H., Zhu, C.R., et al.: Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13, 658–669 (2015)
- 66.
Li, L., Zheng, Y., Zhang, S.L., et al.: Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/c8ee01023d
- 67.
Zhang, Q., Wang, Z.J., Zhang, S.L., et al.: Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energ. Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y
- 68.
Zhou, T.F., Pang, W.K., Zhang, C.F., et al.: Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- 69.
Zheng, Y., Zhou, T.F., Zhao, X.D., et al.: Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396
- 70.
Li, L., Zhang, W.C., Wang, X., et al.: Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 13, 7939–7948 (2019). https://doi.org/10.1021/acsnano.9b02384
- 71.
He, Y., Zhuang, X., Lei, C., et al.: Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019)
- 72.
Cai, M., Thorpe, D., Adamson, D.H., et al.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)
- 73.
Liu, B., Yang, M., Chen, H.B., et al.: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J. Power Sources 397, 1–10 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.100
- 74.
Ojha, K., Kumar, B., Ganguli, A.K.: Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J. Chem. Sci. 129, 397–404 (2017). https://doi.org/10.1007/s12039-017-1248-8
- 75.
Purkait, T., Singh, G., Singh, M., et al.: Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7, 15239 (2017)
- 76.
Liu, B., Liu, Y.J., Chen, H.B., et al.: Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.022
- 77.
Shang, T.X., Xu, Y., Li, P., et al.: A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 70, 104531 (2020). https://doi.org/10.1016/j.nanoen.2020.104531
- 78.
Tian, W.Q., Gao, Q.M., Zhang, L.M., et al.: Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J. Mater. Chem. A 4, 8690–8699 (2016). https://doi.org/10.1039/c6ta02828d
- 79.
Liu, M.Y., Niu, J., Zhang, Z.P., et al.: Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037
- 80.
An, Y.F., Li, Z.M., Yang, Y.Y., et al.: Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv. Mater. Inter. 4, 1700033 (2017). https://doi.org/10.1002/admi.201700033
- 81.
Hou, J.H., Jiang, K., Wei, R., et al.: Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl. Mater. Inter. 9, 30626–30634 (2017). https://doi.org/10.1021/acsami.7b07746
- 82.
Ling, Z., Yu, C., Fan, X.M., et al.: Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 26, 374003 (2015). https://doi.org/10.1088/0957-4484/26/37/374003
- 83.
Li, Z.J., Lv, W., Zhang, C., et al.: A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11–14 (2015). https://doi.org/10.1016/j.carbon.2015.02.054
- 84.
Hao, E.C., Liu, W., Liu, S., et al.: Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 5, 2204–2214 (2017). https://doi.org/10.1039/c6ta08169j
- 85.
Zhao, Y.F., Huang, S.F., Xia, M.R., et al.: N–P–O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016). https://doi.org/10.1016/j.nanoen.2016.08.053
- 86.
Hou, J.H., Cao, C.B., Idrees, F., et al.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015). https://doi.org/10.1021/nn506394r
- 87.
Chang, P.P., Yang, F., Xie, Q.R., et al.: 2D porous carbon nanosheet from sulfonated pitch-based graphene quantum dots for high volumetric performance EDLCs. J. Power Sources 479, 228825 (2020). https://doi.org/10.1016/j.jpowsour.2020.228825
- 88.
Zhao, Y.F., Ran, W., He, J., et al.: Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Inter. 7, 1132–1139 (2015). https://doi.org/10.1021/am506815f
- 89.
Cao, B., Zhang, Q., Liu, H., et al.: Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- 90.
Song, H.K., Jung, Y.H., Lee, K.H., et al.: Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim. Acta 44, 3513–3519 (1999). https://doi.org/10.1016/s0013-4686(99)00121-8
- 91.
Wei, X.J., Wei, J.S., Li, Y.B., et al.: Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources 414, 13–23 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.064
- 92.
Ma, X.M., Wu, Q.H., Wang, W.A., et al.: Mass-producible polyhedral macrotube carbon arrays with multi-hole cross-section profiles: superb 3D tertiary porous electrode materials for supercapacitors and capacitive deionization cells. J. Mater. Chem. A 8, 16312–16322 (2020). https://doi.org/10.1039/d0ta00682c
- 93.
Zhao, G.Y., Chen, C., Yu, D.F., et al.: One-step production of O–N–S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016
- 94.
Razmjooei, F., Singh, K., Kang, T.H., et al.: Urine to highly porous heteroatom-doped carbons for supercapacitor: a value added journey for human waste. Sci. Rep. 7, 10910 (2017). https://doi.org/10.1038/s41598-017-11229-6
- 95.
Ma, Y.Z., Guo, Y., Zhou, C., et al.: Biomass-derived dendritic-like porous carbon aerogels for supercapacitors. Electrochim. Acta 210, 897–904 (2016). https://doi.org/10.1016/j.electacta.2016.06.011
- 96.
Zu, G.Q., Shen, J., Zou, L.P., et al.: Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203–211 (2016). https://doi.org/10.1016/j.carbon.2015.11.079
- 97.
Hao, P., Zhao, Z., Tian, J., et al.: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014). https://doi.org/10.1039/c4nr03574g
- 98.
Huo, S.L., Zhang, X.L., Liang, B.L., et al.: Synthesis of interconnected hierarchically porous carbon networks with excellent diffusion ability based on NaNO3 crystal-assisted strategy for high performance supercapacitors. J. Power Sources 450, 227612 (2020). https://doi.org/10.1016/j.jpowsour.2019.227612
- 99.
Huo, S.L., Zhao, Y.B., Zong, M.Z., et al.: Enhanced supercapacitor and capacitive deionization boosted by constructing inherent N and P external defects in porous carbon framework with a hierarchical porosity. Electrochim. Acta 353, 136523 (2020). https://doi.org/10.1016/j.electacta.2020.136523
- 100.
Dong, S.A., He, X.J., Zhang, H.F., et al.: Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 6, 15954–15960 (2018). https://doi.org/10.1039/c8ta04080j
- 101.
Tian, W.Q., Gao, Q.M., Tan, Y.L., et al.: Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3, 5656–5664 (2015). https://doi.org/10.1039/c4ta06620k
- 102.
Wu, F.C., Tseng, R.L., Hu, C.C., et al.: Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J. Power Sources 144, 302–309 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.020
- 103.
Wang, Q., Yan, J., Fan, Z.J.: Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/c5ee03109e
- 104.
Zhou, Y.Q., Deng, X.L., Li, W.C., et al.: Millimeter-sized few-layer graphene sheets with aligned channels for fast lithium-ion charging kinetics. J. Energy Chem. 55, 62–69 (2021)
- 105.
Thangavel, R., Kaliyappan, K., Ramasamy, V., et al.: Engineering the pores of biomass-derived carbon: insights for achieving ultrahigh stability at high power in high-energy supercapacitors. ChemSusChem 10, 2805–2815 (2017). https://doi.org/10.1002/cssc.201700492
- 106.
Zhang, F., Liu, T., Li, M.Y., et al.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
- 107.
Liu, S.M., Liang, Y.R., Zhou, W., et al.: Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J. Mater. Chem. A 6, 12046–12055 (2018). https://doi.org/10.1039/c8ta02838a
- 108.
Biswal, M., Banerjee, A., Deo, M., et al.: From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013). https://doi.org/10.1039/c3ee22325f
- 109.
Lyu, L., Seong, K., Ko, D., et al.: Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater. Chem. Front. 3, 2543–2570 (2019)
- 110.
Raymundo-Piñero, E., Cadek, M., Béguin, F.: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057
- 111.
Xue, J., Zhao, Y., Cheng, H., et al.: An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys. Chem. Chem. Phys. 15, 8042–8045 (2013). https://doi.org/10.1039/c3cp51571k
- 112.
Wahid, M., Parte, G., Fernandes, R., et al.: Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Adv. 5, 51382–51391 (2015). https://doi.org/10.1039/c5ra05107j
- 113.
Chen, X.Y., Chen, C., Zhang, Z.J., et al.: Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J. Mater. Chem. A 1, 10903–10911 (2013). https://doi.org/10.1039/c3ta12328f
- 114.
Zhou, J., Xu, L., Li, L., et al.: Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. J. Colloid Interf. Sci. 545, 25–34 (2019)
- 115.
Feng, S., Li, W., Wang, J., et al.: Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale 6, 14657–14661 (2014). https://doi.org/10.1039/c4nr05629a
- 116.
Leng, C., Sun, K., Li, J., et al.: From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain. Chem. Eng. 5, 10474–10482 (2017)
- 117.
Zhang, Y., Ma, Q., Li, H., et al.: Robust production of ultrahigh surface area carbon sheets for energy storage. Small 14, 1800133 (2018)
- 118.
Qian, L., Guo, F.Q., Jia, X.P., et al.: Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review. Ionics 26, 3705–3723 (2020). https://doi.org/10.1007/s11581-020-03626-1
- 119.
Ouyang, T., Cheng, K., Gao, Y.Y., et al.: Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. J. Mater. Chem. A 4, 9832–9843 (2016). https://doi.org/10.1039/c6ta02673g
- 120.
Peng, H.R., Wei, B.Y.X.J., Liu, T.Y., et al.: Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019)
- 121.
Tian, Z.W., Xiang, M., Zhou, J.C., et al.: Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim. Acta 211, 225–233 (2016). https://doi.org/10.1016/j.electacta.2016.06.053
- 122.
Ling, Z., Wang, Z.Y., Zhang, M.D., et al.: Sustainable synthesis: Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119 (2016). https://doi.org/10.1002/adfm.201670001
- 123.
Yang, T.Z., Qian, T., Wang, M.F., et al.: A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 28, 539–545 (2016). https://doi.org/10.1002/adma.201503221
- 124.
Wu, X.L., Jiang, L.L., Long, C.L., et al.: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013
- 125.
Zhao, Y.Q., Lu, M., Tao, P.Y., et al.: Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)
- 126.
Zhu, G., Ma, L., Lv, H., et al.: Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 9, 1237–1243 (2017). https://doi.org/10.1039/c6nr08139h
- 127.
Zhang, J., Zhou, H., Liu, X., et al.: Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 4, 15870–15879 (2016)
- 128.
Bi, L.L., Ci, S.Q., Cai, P.W., et al.: One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Appl. Surf. Sci. 427, 10–16 (2018). https://doi.org/10.1016/j.apsusc.2017.08.030
- 129.
Zhang, F., Liu, T., Zhang, J.H., et al.: The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon 147, 451–459 (2019). https://doi.org/10.1016/j.carbon.2019.03.011
- 130.
Mousavi, H., Moradian, R.: Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 13, 1459–1464 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.008
- 131.
Ismagilov, Z.R., Shalagina, A.E., Podyachevaa, O.Y., et al.: Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47, 1922–1929 (2009)
- 132.
Cao, J.H., Zhu, C.Y., Aoki, Y., et al.: Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6, 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459
- 133.
Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., et al.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012). https://doi.org/10.1016/j.biortech.2012.02.010
- 134.
Yi, J.N., Qing, Y., Wu, C.T., et al.: Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 351, 130–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.036
- 135.
Li, D.H., Chang, G.J., Zong, L., et al.: From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater. 17, 22–30 (2019). https://doi.org/10.1016/j.ensm.2018.08.004
- 136.
Fan, P., Ren, J., Pang, K., et al.: Cellulose-solvent-assisted, one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors. ACS Sustain. Chem. Eng. 6, 7715–7724 (2018)
- 137.
Cui, C.X., Gao, Y., Li, J., et al.: Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59, 7928–7933 (2020). https://doi.org/10.1002/anie.202000319
- 138.
Zhao, X., Wang, S., Wu, Q.: Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance. Electrochim. Acta 247, 1140–1146 (2017)
- 139.
Chen, L.F., Huang, Z.H., Liang, H.W., et al.: Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331–3338 (2013). https://doi.org/10.1039/c3ee42366b
- 140.
Yu, X., Wang, Y., Li, L., et al.: Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci. Rep. 7, 45378 (2017). https://doi.org/10.1038/srep45378
- 141.
Chen, C.J., Zhang, Y., Li, Y.J., et al.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
- 142.
Zhang, S., Zheng, Y., Huang, X., et al.: Structural engineering of hierarchical micronanostructured Ge–C framework by controlling the nucleation for ultralong life Li storage. Adv. Energy Mater. 9, 1900081 (2019)
- 143.
Wang, Z., Gao, H., Zhang, Q., et al.: Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15, e1803858 (2019). https://doi.org/10.1002/smll.201803858
- 144.
Wu, J.X., Cao, Y.L., Zhao, H.M., et al.: The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1, 57–76 (2019). https://doi.org/10.1002/cey2.2
- 145.
Yang, J., Yu, C., Fan, X.M., et al.: Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/c5ee03633j
- 146.
Ran, F.T., Xu, X.Q., Pan, D., et al.: Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano-Micro Lett. 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-0382-x
- 147.
Wang, M., Yang, J., Liu, S.Y., et al.: Polyethyleneimine-mediated fabrication of two-dimensional cobalt sulfide/graphene hybrid nanosheets for high-performance supercapacitors. ACS Appl. Mater. Inter. 11, 26235–26242 (2019). https://doi.org/10.1021/acsami.9b03934
- 148.
Jeon, Y., Lee, J., Kim, M., et al.: Fe3O4 nanoparticle decorated three-dimensional porous carbon/MoS2 composites as anodes for high performance lithium-ion batteries. Nanoscale 11, 4837–4845 (2019). https://doi.org/10.1039/c8nr10491c
- 149.
Tang, Y.J., Zheng, S.S., Xu, Y.X., et al.: Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 12, 284–309 (2018). https://doi.org/10.1016/j.ensm.2018.02.010
- 150.
Yuan, C.J., Lin, H.B., Lu, H.Y., et al.: Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl. Energy 178, 260–268 (2016). https://doi.org/10.1016/j.apenergy.2016.06.057
- 151.
Wu, J.F., Zhang, Q.N., Wang, J.J., et al.: A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 11, 1280–1286 (2018). https://doi.org/10.1039/c8ee00078f
- 152.
Wang, H.Q., Zhang, C.F., Chen, Z.X., et al.: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81, 782–787 (2015). https://doi.org/10.1016/j.carbon.2014.10.024
- 153.
Ning, X.L., Li, F., Zhou, Y., et al.: Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chem. Eng. J. 328, 599–608 (2017). https://doi.org/10.1016/j.cej.2017.07.062
- 154.
Yang, M., Kim, D.S., Hong, S.B., et al.: MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir 33, 5140–5147 (2017). https://doi.org/10.1021/acs.langmuir.7b00589
- 155.
Yu, P.P., Zhang, Z.M., Zheng, L.X., et al.: A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 6, 1601111 (2016). https://doi.org/10.1002/aenm.201601111
- 156.
Xiong, W., Hu, X., Wu, X., et al.: A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@polypyrrole core–shell nanowires on hemp-derived carbon. J. Mater. Chem. A 3, 17209–17216 (2015). https://doi.org/10.1039/c5ta04201a
- 157.
Wu, X.L., Wen, T., Guo, H.L., et al.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013). https://doi.org/10.1021/nn400566d
- 158.
Song, W.L., Li, X.G., Fan, L.Z.: Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Mater. 3, 113–122 (2016). https://doi.org/10.1016/j.ensm.2016.01.010
- 159.
Kim, S.K., Kim, Y.K., Lee, H., et al.: Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. ChemSusChem 7, 1094–1101 (2014). https://doi.org/10.1002/cssc.201301061
- 160.
Hu, S., Rajamani, R., Yu, X.: Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 100, 104103 (2012). https://doi.org/10.1063/1.3691948
- 161.
Deng, L.B., Young, R.J., Kinloch, I.A., et al.: Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Inter. 5, 9983–9990 (2013). https://doi.org/10.1021/am403622v
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (21905220, 21875141, 51772240, 21503158), the Key Research and Development Plan of Shanxi Province (China, Grant No. 2018 ZDXM-GY-135), the Fundamental Research Funds for the “Young Talent Support Plan” of Xi’an Jiaotong University (HG6J003) the Shanghai Pujiang Program (18PJ1409000) and the Shanghai Scientific and Technological Innovation Project (19JC1410400). Financial support provided by the Australian Research Council (ARC) (DP200101862) is also gratefully acknowledged. We would further like to thank Dr. T. Silver for her critical reading of this manuscript.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
There are no conflicts to declare.
Rights and permissions
About this article
Cite this article
Zhou, J., Zhang, S., Zhou, YN. et al. Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochem. Energ. Rev. (2021). https://doi.org/10.1007/s41918-020-00090-3
Received:
Revised:
Accepted:
Published:
Keywords
- Biomass-derived carbonaceous
- Electrodes
- Structural engineering
- Doping effects
- Supercapacitors