Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective

Abstract

Supercapacitors are electrochemical energy storage systems that depend on high-surface-area electrodes and can play a dominant role in areas that require high power delivery or uptake. And of various electrodes, biomass-derived carbonaceous electrodes have recently shown impressive promise in high-performance supercapacitors because of their widespread availability, renewable nature and low-cost electricity storage. Based on this, this review will discuss the current status of biomass-derived carbon materials in supercapacitors and highlight current research with a specific emphasis on the influences of structure and elemental doping on the electrochemical performance of corresponding carbon electrodes. This review will also discuss the gap between laboratory achievements and practical utilization in terms of these biomass-derived carbon materials and outline practical strategies for future improvement.

Graphic Abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Jiang, Y.Q., Liu, J.P.: Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  2. 2.

    Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Béguin, F., Presser, V., Balducci, A., et al.: Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014). https://doi.org/10.1002/adma.201304137

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Gong, Y.N., Li, D.L., Luo, C.Z., et al.: Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017). https://doi.org/10.1039/c7gc01681f

    CAS  Article  Google Scholar 

  5. 5.

    Wang, F.X., Wu, X.W., Yuan, X.H., et al.: Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/c7cs00205j

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bi, Z.H., Kong, Q.Q., Cao, Y.F., et al.: Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7, 16028–16045 (2019). https://doi.org/10.1039/c9ta04436a

    CAS  Article  Google Scholar 

  7. 7.

    Bonaccorso, F., Colombo, L., Yu, G.H., et al.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Li, B., Dai, F., Xiao, Q.F., et al.: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016). https://doi.org/10.1039/c5ee03149d

    CAS  Article  Google Scholar 

  9. 9.

    Chen, Y.Z., Pang, W.K., Bai, H.H., et al.: Enhanced structural stability of nickel–cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429–436 (2017). https://doi.org/10.1021/acs.nanolett.6b04427

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Chen, Y.Z., Zhou, T.F., Li, L., et al.: Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13, 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chen, Y.Z., Zhou, T.F., Liu, Y.N., et al.: In situ formation of a carbon fiber@Ni3S2 non-woven electrode with ultrahigh areal and volumetric capacitance. J. Mater. Chem. A 5, 23476–23480 (2017). https://doi.org/10.1039/c7ta08802g

    CAS  Article  Google Scholar 

  12. 12.

    Sevilla, M., Mokaya, R.: Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014). https://doi.org/10.1039/c3ee43525c

    CAS  Article  Google Scholar 

  13. 13.

    Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d

    CAS  Article  Google Scholar 

  14. 14.

    González, A., Goikolea, E., Barrena, J.A., et al.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    CAS  Article  Google Scholar 

  15. 15.

    Tian, W.J., Zhang, H.Y., Sun, H.Q., et al.: Porous carbon: heteroatom (N or N–S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv. Funct. Mater. 26, 8651–8661 (2016). https://doi.org/10.1002/adfm.201670311

    CAS  Article  Google Scholar 

  16. 16.

    Gao, X., Liu, H.B., Wang, D., et al.: Graphdiyne: synthesis, properties, and applications. Chem. Soc. Rev. 48, 908–936 (2019). https://doi.org/10.1039/c8cs00773j

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pampel, J., Mehmood, A., Antonietti, M., et al.: Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons. Mater. Horiz. 4, 493–501 (2017). https://doi.org/10.1039/c6mh00592f

    CAS  Article  Google Scholar 

  18. 18.

    Chen, Q., Tan, X.F., Liu, Y.G., et al.: Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 8, 5773–5811 (2020). https://doi.org/10.1039/c9ta11618d

    CAS  Article  Google Scholar 

  19. 19.

    Long, W., Fang, B.Z., Ignaszak, A., et al.: Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 46, 7176–7190 (2017). https://doi.org/10.1039/c6cs00639f

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wang, C., Xiong, Y., Wang, H.W., et al.: Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J. Mater. Chem. A 5, 15759–15770 (2017). https://doi.org/10.1039/c7ta04178k

    CAS  Article  Google Scholar 

  21. 21.

    Yin, H.Y., Lu, B.H., Xu, Y., et al.: Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ. Sci. Technol. 48, 8101–8108 (2014). https://doi.org/10.1021/es501739v

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wang, Z.H., Shen, D.K., Wu, C.F., et al.: State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 20, 5031–5057 (2018). https://doi.org/10.1039/c8gc01748d

    CAS  Article  Google Scholar 

  23. 23.

    Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J. Power Sources 387, 81–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061

    CAS  Article  Google Scholar 

  24. 24.

    Zhou, J.Q., Wang, M., Li, X.: Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Appl. Surf. Sci. 462, 444–452 (2018). https://doi.org/10.1016/j.apsusc.2018.08.158

    CAS  Article  Google Scholar 

  25. 25.

    Liu, T., Zhang, F., Song, Y., et al.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j

    CAS  Article  Google Scholar 

  26. 26.

    Wang, J.S., Zhang, X., Li, Z., et al.: Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020). https://doi.org/10.1016/j.jpowsour.2020.227794

    CAS  Article  Google Scholar 

  27. 27.

    Chmiola, J., Yushin, G., Gogotsi, Y., et al.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Béguin, F., Presser, V., Balducci, A., et al.: Challenges and opportunities in graphene commercialization. Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  29. 29.

    Jin, J.T., Qiao, X.C., Zhou, F., et al.: Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. Inter. 9, 17317–17325 (2017). https://doi.org/10.1021/acsami.7b00617

    CAS  Article  Google Scholar 

  30. 30.

    Zhao, Z., Liu, S.L., Zhu, J.X., et al.: Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Inter. 10, 19871–19880 (2018). https://doi.org/10.1021/acsami.8b03431

    CAS  Article  Google Scholar 

  31. 31.

    Jiang, L.L., Sheng, L.Z., Fan, Z.J.: Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 61, 133–158 (2018). https://doi.org/10.1007/s40843-017-9169-4

    CAS  Article  Google Scholar 

  32. 32.

    Zheng, Y., Zhou, T., Zhang, C., et al.: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978

    CAS  Article  Google Scholar 

  33. 33.

    Falco, C., Baccile, N., Titirici, M.M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13, 3273–3281 (2011). https://doi.org/10.1039/c1gc15742f

    CAS  Article  Google Scholar 

  34. 34.

    Gaddam, R.R., Yang, D., Narayan, R., et al.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016). https://doi.org/10.1016/j.nanoen.2016.05.047

    CAS  Article  Google Scholar 

  35. 35.

    Yan, D., Yu, C.Y., Zhang, X.J., et al.: Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 191, 385–391 (2016). https://doi.org/10.1016/j.electacta.2016.01.105

    CAS  Article  Google Scholar 

  36. 36.

    Wang, T., Liu, X.Q., Ma, C.C., et al.: A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core–shell non-metallic photocatalysts. New J. Chem. 42, 6515–6524 (2018). https://doi.org/10.1039/c8nj00953h

    CAS  Article  Google Scholar 

  37. 37.

    Liang, X., Wen, Z.Y., Liu, Y., et al.: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 196, 3655–3658 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.052

    CAS  Article  Google Scholar 

  38. 38.

    Zhang, S., Yao, F., Yang, L., et al.: Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries. Carbon 93, 143–150 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    Liu, S.M., Cai, Y.J., Zhao, X., et al.: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J. Power Sources 360, 373–382 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.029

    CAS  Article  Google Scholar 

  40. 40.

    Liu, S.B., Zhao, Y., Zhang, B.H., et al.: Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J. Power Sources 381, 116–126 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.014

    CAS  Article  Google Scholar 

  41. 41.

    Duan, B., Gao, X., Yao, X., et al.: Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). https://doi.org/10.1016/j.nanoen.2016.07.034

    CAS  Article  Google Scholar 

  42. 42.

    Tang, K., White, R.J., Mu, X.K., et al.: Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem 5, 400–403 (2012). https://doi.org/10.1002/cssc.201100609

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wei, X.J., Li, Y.B., Gao, S.Y.: Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J. Mater. Chem. A 5, 181–188 (2017). https://doi.org/10.1039/c6ta07826e

    CAS  Article  Google Scholar 

  44. 44.

    Meng, W.X., Bai, X., Wang, B.Y., et al.: Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2, 172–192 (2019). https://doi.org/10.1002/eem2.12038

    CAS  Article  Google Scholar 

  45. 45.

    Hoang, V.C., Gomes, V.G.: High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Mater. Today Energy 12, 198–207 (2019). https://doi.org/10.1016/j.mtener.2019.01.013

    Article  Google Scholar 

  46. 46.

    Wang, T., Zang, X.B., Wang, X., et al.: Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater. 30, 367–384 (2020). https://doi.org/10.1016/j.ensm.2020.04.044

    Article  Google Scholar 

  47. 47.

    Ogale, A.A., Zhang, M., Jin, J.: Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 133, 43794 (2016). https://doi.org/10.1002/app.43794

    CAS  Article  Google Scholar 

  48. 48.

    Moon, R.J., Martini, A., Nairn, J., et al.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wei, Q.L., Xiong, F.Y., Tan, S.S., et al.: Energy storage: Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017). https://doi.org/10.1002/adma.201770134

    CAS  Article  Google Scholar 

  50. 50.

    Li, S.H., Huang, D.K., Yang, J.C., et al.: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004

    CAS  Article  Google Scholar 

  51. 51.

    Zhang, Z., Mu, S.C., Zhang, B.W., et al.: A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. J. Mater. Chem. A 4, 2137–2146 (2016). https://doi.org/10.1039/c5ta09631f

    CAS  Article  Google Scholar 

  52. 52.

    Jin, Z., Yan, X.D., Yu, Y.H., et al.: Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2, 11706–11715 (2014). https://doi.org/10.1039/c4ta01413h

    CAS  Article  Google Scholar 

  53. 53.

    Hao, X.D., Wang, J., Ding, B., et al.: Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J. Power Sources 352, 34–41 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.088

    CAS  Article  Google Scholar 

  54. 54.

    Liu, Y., Shi, Z.J., Gao, Y.F., et al.: Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl. Mater. Inter. 8, 28283–28290 (2016). https://doi.org/10.1021/acsami.5b11558

    CAS  Article  Google Scholar 

  55. 55.

    Li, Y.J., Wang, G.L., Wei, T., et al.: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    CAS  Article  Google Scholar 

  56. 56.

    Chen, W.S., Yu, H.P., Lee, S.Y., et al.: Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872 (2018). https://doi.org/10.1039/c7cs00790f

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Cai, J., Niu, H.T., Li, Z.Y., et al.: High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Inter. 7, 14946–14953 (2015). https://doi.org/10.1021/acsami.5b03757

    CAS  Article  Google Scholar 

  58. 58.

    Kuzmenko, V., Naboka, O., Gatenholm, P., et al.: Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon 67, 694–703 (2014). https://doi.org/10.1016/j.carbon.2013.10.061

    CAS  Article  Google Scholar 

  59. 59.

    Berenguer, R., García-Mateos, F.J., Ruiz-Rosas, R., et al.: Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem. 18, 1506–1515 (2016). https://doi.org/10.1039/c5gc02409a

    CAS  Article  Google Scholar 

  60. 60.

    Li, M., Xiao, H., Zhang, T., et al.: Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustainable Chem. Eng. 7, 4716–4723 (2019)

    CAS  Article  Google Scholar 

  61. 61.

    Dong, Y.H., Wang, W.X., Quan, H.Y., et al.: Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors. ChemElectroChem 3, 814–821 (2016). https://doi.org/10.1002/celc.201500519

    CAS  Article  Google Scholar 

  62. 62.

    Cao, Y.F., Xie, L.J., Sun, G.H., et al.: Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain. Energy Fuels 2, 455–465 (2018). https://doi.org/10.1039/c7se00481h

    CAS  Article  Google Scholar 

  63. 63.

    Sakurada, I., Nukushina, Y., Ito, T.: Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (1962). https://doi.org/10.1002/pol.1962.1205716551

    CAS  Article  Google Scholar 

  64. 64.

    Xie, L.J., Sun, G.H., Su, F.Y., et al.: Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4, 1637–1646 (2016). https://doi.org/10.1039/c5ta09043a

    CAS  Article  Google Scholar 

  65. 65.

    Wang, H., Yi, H., Zhu, C.R., et al.: Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13, 658–669 (2015)

    CAS  Article  Google Scholar 

  66. 66.

    Li, L., Zheng, Y., Zhang, S.L., et al.: Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/c8ee01023d

    CAS  Article  Google Scholar 

  67. 67.

    Zhang, Q., Wang, Z.J., Zhang, S.L., et al.: Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energ. Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y

    CAS  Article  Google Scholar 

  68. 68.

    Zhou, T.F., Pang, W.K., Zhang, C.F., et al.: Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014). https://doi.org/10.1021/nn503582c

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Zheng, Y., Zhou, T.F., Zhao, X.D., et al.: Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396

    CAS  Article  Google Scholar 

  70. 70.

    Li, L., Zhang, W.C., Wang, X., et al.: Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 13, 7939–7948 (2019). https://doi.org/10.1021/acsnano.9b02384

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    He, Y., Zhuang, X., Lei, C., et al.: Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019)

    CAS  Article  Google Scholar 

  72. 72.

    Cai, M., Thorpe, D., Adamson, D.H., et al.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)

    CAS  Article  Google Scholar 

  73. 73.

    Liu, B., Yang, M., Chen, H.B., et al.: Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J. Power Sources 397, 1–10 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.100

    CAS  Article  Google Scholar 

  74. 74.

    Ojha, K., Kumar, B., Ganguli, A.K.: Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J. Chem. Sci. 129, 397–404 (2017). https://doi.org/10.1007/s12039-017-1248-8

    CAS  Article  Google Scholar 

  75. 75.

    Purkait, T., Singh, G., Singh, M., et al.: Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7, 15239 (2017)

    Article  Google Scholar 

  76. 76.

    Liu, B., Liu, Y.J., Chen, H.B., et al.: Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.022

    CAS  Article  Google Scholar 

  77. 77.

    Shang, T.X., Xu, Y., Li, P., et al.: A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 70, 104531 (2020). https://doi.org/10.1016/j.nanoen.2020.104531

    CAS  Article  Google Scholar 

  78. 78.

    Tian, W.Q., Gao, Q.M., Zhang, L.M., et al.: Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J. Mater. Chem. A 4, 8690–8699 (2016). https://doi.org/10.1039/c6ta02828d

    CAS  Article  Google Scholar 

  79. 79.

    Liu, M.Y., Niu, J., Zhang, Z.P., et al.: Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037

    CAS  Article  Google Scholar 

  80. 80.

    An, Y.F., Li, Z.M., Yang, Y.Y., et al.: Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv. Mater. Inter. 4, 1700033 (2017). https://doi.org/10.1002/admi.201700033

    CAS  Article  Google Scholar 

  81. 81.

    Hou, J.H., Jiang, K., Wei, R., et al.: Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl. Mater. Inter. 9, 30626–30634 (2017). https://doi.org/10.1021/acsami.7b07746

    CAS  Article  Google Scholar 

  82. 82.

    Ling, Z., Yu, C., Fan, X.M., et al.: Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 26, 374003 (2015). https://doi.org/10.1088/0957-4484/26/37/374003

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Li, Z.J., Lv, W., Zhang, C., et al.: A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11–14 (2015). https://doi.org/10.1016/j.carbon.2015.02.054

    CAS  Article  Google Scholar 

  84. 84.

    Hao, E.C., Liu, W., Liu, S., et al.: Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 5, 2204–2214 (2017). https://doi.org/10.1039/c6ta08169j

    CAS  Article  Google Scholar 

  85. 85.

    Zhao, Y.F., Huang, S.F., Xia, M.R., et al.: N–P–O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016). https://doi.org/10.1016/j.nanoen.2016.08.053

    CAS  Article  Google Scholar 

  86. 86.

    Hou, J.H., Cao, C.B., Idrees, F., et al.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015). https://doi.org/10.1021/nn506394r

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Chang, P.P., Yang, F., Xie, Q.R., et al.: 2D porous carbon nanosheet from sulfonated pitch-based graphene quantum dots for high volumetric performance EDLCs. J. Power Sources 479, 228825 (2020). https://doi.org/10.1016/j.jpowsour.2020.228825

    CAS  Article  Google Scholar 

  88. 88.

    Zhao, Y.F., Ran, W., He, J., et al.: Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Inter. 7, 1132–1139 (2015). https://doi.org/10.1021/am506815f

    CAS  Article  Google Scholar 

  89. 89.

    Cao, B., Zhang, Q., Liu, H., et al.: Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149

    CAS  Article  Google Scholar 

  90. 90.

    Song, H.K., Jung, Y.H., Lee, K.H., et al.: Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim. Acta 44, 3513–3519 (1999). https://doi.org/10.1016/s0013-4686(99)00121-8

    CAS  Article  Google Scholar 

  91. 91.

    Wei, X.J., Wei, J.S., Li, Y.B., et al.: Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources 414, 13–23 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.064

    CAS  Article  Google Scholar 

  92. 92.

    Ma, X.M., Wu, Q.H., Wang, W.A., et al.: Mass-producible polyhedral macrotube carbon arrays with multi-hole cross-section profiles: superb 3D tertiary porous electrode materials for supercapacitors and capacitive deionization cells. J. Mater. Chem. A 8, 16312–16322 (2020). https://doi.org/10.1039/d0ta00682c

    CAS  Article  Google Scholar 

  93. 93.

    Zhao, G.Y., Chen, C., Yu, D.F., et al.: One-step production of O–N–S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016

    CAS  Article  Google Scholar 

  94. 94.

    Razmjooei, F., Singh, K., Kang, T.H., et al.: Urine to highly porous heteroatom-doped carbons for supercapacitor: a value added journey for human waste. Sci. Rep. 7, 10910 (2017). https://doi.org/10.1038/s41598-017-11229-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Ma, Y.Z., Guo, Y., Zhou, C., et al.: Biomass-derived dendritic-like porous carbon aerogels for supercapacitors. Electrochim. Acta 210, 897–904 (2016). https://doi.org/10.1016/j.electacta.2016.06.011

    CAS  Article  Google Scholar 

  96. 96.

    Zu, G.Q., Shen, J., Zou, L.P., et al.: Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203–211 (2016). https://doi.org/10.1016/j.carbon.2015.11.079

    CAS  Article  Google Scholar 

  97. 97.

    Hao, P., Zhao, Z., Tian, J., et al.: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014). https://doi.org/10.1039/c4nr03574g

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Huo, S.L., Zhang, X.L., Liang, B.L., et al.: Synthesis of interconnected hierarchically porous carbon networks with excellent diffusion ability based on NaNO3 crystal-assisted strategy for high performance supercapacitors. J. Power Sources 450, 227612 (2020). https://doi.org/10.1016/j.jpowsour.2019.227612

    CAS  Article  Google Scholar 

  99. 99.

    Huo, S.L., Zhao, Y.B., Zong, M.Z., et al.: Enhanced supercapacitor and capacitive deionization boosted by constructing inherent N and P external defects in porous carbon framework with a hierarchical porosity. Electrochim. Acta 353, 136523 (2020). https://doi.org/10.1016/j.electacta.2020.136523

    CAS  Article  Google Scholar 

  100. 100.

    Dong, S.A., He, X.J., Zhang, H.F., et al.: Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 6, 15954–15960 (2018). https://doi.org/10.1039/c8ta04080j

    CAS  Article  Google Scholar 

  101. 101.

    Tian, W.Q., Gao, Q.M., Tan, Y.L., et al.: Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3, 5656–5664 (2015). https://doi.org/10.1039/c4ta06620k

    CAS  Article  Google Scholar 

  102. 102.

    Wu, F.C., Tseng, R.L., Hu, C.C., et al.: Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J. Power Sources 144, 302–309 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.020

    CAS  Article  Google Scholar 

  103. 103.

    Wang, Q., Yan, J., Fan, Z.J.: Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/c5ee03109e

    CAS  Article  Google Scholar 

  104. 104.

    Zhou, Y.Q., Deng, X.L., Li, W.C., et al.: Millimeter-sized few-layer graphene sheets with aligned channels for fast lithium-ion charging kinetics. J. Energy Chem. 55, 62–69 (2021)

    Article  Google Scholar 

  105. 105.

    Thangavel, R., Kaliyappan, K., Ramasamy, V., et al.: Engineering the pores of biomass-derived carbon: insights for achieving ultrahigh stability at high power in high-energy supercapacitors. ChemSusChem 10, 2805–2815 (2017). https://doi.org/10.1002/cssc.201700492

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Zhang, F., Liu, T., Li, M.Y., et al.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Liu, S.M., Liang, Y.R., Zhou, W., et al.: Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J. Mater. Chem. A 6, 12046–12055 (2018). https://doi.org/10.1039/c8ta02838a

    CAS  Article  Google Scholar 

  108. 108.

    Biswal, M., Banerjee, A., Deo, M., et al.: From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013). https://doi.org/10.1039/c3ee22325f

    CAS  Article  Google Scholar 

  109. 109.

    Lyu, L., Seong, K., Ko, D., et al.: Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater. Chem. Front. 3, 2543–2570 (2019)

    CAS  Article  Google Scholar 

  110. 110.

    Raymundo-Piñero, E., Cadek, M., Béguin, F.: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057

    CAS  Article  Google Scholar 

  111. 111.

    Xue, J., Zhao, Y., Cheng, H., et al.: An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys. Chem. Chem. Phys. 15, 8042–8045 (2013). https://doi.org/10.1039/c3cp51571k

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Wahid, M., Parte, G., Fernandes, R., et al.: Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Adv. 5, 51382–51391 (2015). https://doi.org/10.1039/c5ra05107j

    CAS  Article  Google Scholar 

  113. 113.

    Chen, X.Y., Chen, C., Zhang, Z.J., et al.: Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J. Mater. Chem. A 1, 10903–10911 (2013). https://doi.org/10.1039/c3ta12328f

    CAS  Article  Google Scholar 

  114. 114.

    Zhou, J., Xu, L., Li, L., et al.: Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. J. Colloid Interf. Sci. 545, 25–34 (2019)

    CAS  Article  Google Scholar 

  115. 115.

    Feng, S., Li, W., Wang, J., et al.: Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale 6, 14657–14661 (2014). https://doi.org/10.1039/c4nr05629a

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Leng, C., Sun, K., Li, J., et al.: From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain. Chem. Eng. 5, 10474–10482 (2017)

    CAS  Article  Google Scholar 

  117. 117.

    Zhang, Y., Ma, Q., Li, H., et al.: Robust production of ultrahigh surface area carbon sheets for energy storage. Small 14, 1800133 (2018)

    Article  Google Scholar 

  118. 118.

    Qian, L., Guo, F.Q., Jia, X.P., et al.: Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review. Ionics 26, 3705–3723 (2020). https://doi.org/10.1007/s11581-020-03626-1

    CAS  Article  Google Scholar 

  119. 119.

    Ouyang, T., Cheng, K., Gao, Y.Y., et al.: Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. J. Mater. Chem. A 4, 9832–9843 (2016). https://doi.org/10.1039/c6ta02673g

    CAS  Article  Google Scholar 

  120. 120.

    Peng, H.R., Wei, B.Y.X.J., Liu, T.Y., et al.: Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019)

    Article  Google Scholar 

  121. 121.

    Tian, Z.W., Xiang, M., Zhou, J.C., et al.: Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim. Acta 211, 225–233 (2016). https://doi.org/10.1016/j.electacta.2016.06.053

    CAS  Article  Google Scholar 

  122. 122.

    Ling, Z., Wang, Z.Y., Zhang, M.D., et al.: Sustainable synthesis: Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119 (2016). https://doi.org/10.1002/adfm.201670001

    CAS  Article  Google Scholar 

  123. 123.

    Yang, T.Z., Qian, T., Wang, M.F., et al.: A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 28, 539–545 (2016). https://doi.org/10.1002/adma.201503221

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Wu, X.L., Jiang, L.L., Long, C.L., et al.: From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013

    CAS  Article  Google Scholar 

  125. 125.

    Zhao, Y.Q., Lu, M., Tao, P.Y., et al.: Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)

    CAS  Article  Google Scholar 

  126. 126.

    Zhu, G., Ma, L., Lv, H., et al.: Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 9, 1237–1243 (2017). https://doi.org/10.1039/c6nr08139h

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Zhang, J., Zhou, H., Liu, X., et al.: Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 4, 15870–15879 (2016)

    CAS  Article  Google Scholar 

  128. 128.

    Bi, L.L., Ci, S.Q., Cai, P.W., et al.: One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Appl. Surf. Sci. 427, 10–16 (2018). https://doi.org/10.1016/j.apsusc.2017.08.030

    CAS  Article  Google Scholar 

  129. 129.

    Zhang, F., Liu, T., Zhang, J.H., et al.: The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon 147, 451–459 (2019). https://doi.org/10.1016/j.carbon.2019.03.011

    CAS  Article  Google Scholar 

  130. 130.

    Mousavi, H., Moradian, R.: Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 13, 1459–1464 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.008

    CAS  Article  Google Scholar 

  131. 131.

    Ismagilov, Z.R., Shalagina, A.E., Podyachevaa, O.Y., et al.: Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47, 1922–1929 (2009)

    CAS  Article  Google Scholar 

  132. 132.

    Cao, J.H., Zhu, C.Y., Aoki, Y., et al.: Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6, 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459

    CAS  Article  Google Scholar 

  133. 133.

    Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., et al.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012). https://doi.org/10.1016/j.biortech.2012.02.010

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Yi, J.N., Qing, Y., Wu, C.T., et al.: Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 351, 130–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.036

    CAS  Article  Google Scholar 

  135. 135.

    Li, D.H., Chang, G.J., Zong, L., et al.: From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater. 17, 22–30 (2019). https://doi.org/10.1016/j.ensm.2018.08.004

    CAS  Article  Google Scholar 

  136. 136.

    Fan, P., Ren, J., Pang, K., et al.: Cellulose-solvent-assisted, one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors. ACS Sustain. Chem. Eng. 6, 7715–7724 (2018)

    CAS  Article  Google Scholar 

  137. 137.

    Cui, C.X., Gao, Y., Li, J., et al.: Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed. 59, 7928–7933 (2020). https://doi.org/10.1002/anie.202000319

    CAS  Article  Google Scholar 

  138. 138.

    Zhao, X., Wang, S., Wu, Q.: Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance. Electrochim. Acta 247, 1140–1146 (2017)

    CAS  Article  Google Scholar 

  139. 139.

    Chen, L.F., Huang, Z.H., Liang, H.W., et al.: Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331–3338 (2013). https://doi.org/10.1039/c3ee42366b

    CAS  Article  Google Scholar 

  140. 140.

    Yu, X., Wang, Y., Li, L., et al.: Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci. Rep. 7, 45378 (2017). https://doi.org/10.1038/srep45378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Chen, C.J., Zhang, Y., Li, Y.J., et al.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j

    CAS  Article  Google Scholar 

  142. 142.

    Zhang, S., Zheng, Y., Huang, X., et al.: Structural engineering of hierarchical micronanostructured Ge–C framework by controlling the nucleation for ultralong life Li storage. Adv. Energy Mater. 9, 1900081 (2019)

    Article  Google Scholar 

  143. 143.

    Wang, Z., Gao, H., Zhang, Q., et al.: Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15, e1803858 (2019). https://doi.org/10.1002/smll.201803858

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Wu, J.X., Cao, Y.L., Zhao, H.M., et al.: The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1, 57–76 (2019). https://doi.org/10.1002/cey2.2

    CAS  Article  Google Scholar 

  145. 145.

    Yang, J., Yu, C., Fan, X.M., et al.: Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/c5ee03633j

    CAS  Article  Google Scholar 

  146. 146.

    Ran, F.T., Xu, X.Q., Pan, D., et al.: Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano-Micro Lett. 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-0382-x

    CAS  Article  Google Scholar 

  147. 147.

    Wang, M., Yang, J., Liu, S.Y., et al.: Polyethyleneimine-mediated fabrication of two-dimensional cobalt sulfide/graphene hybrid nanosheets for high-performance supercapacitors. ACS Appl. Mater. Inter. 11, 26235–26242 (2019). https://doi.org/10.1021/acsami.9b03934

    CAS  Article  Google Scholar 

  148. 148.

    Jeon, Y., Lee, J., Kim, M., et al.: Fe3O4 nanoparticle decorated three-dimensional porous carbon/MoS2 composites as anodes for high performance lithium-ion batteries. Nanoscale 11, 4837–4845 (2019). https://doi.org/10.1039/c8nr10491c

    CAS  Article  PubMed  Google Scholar 

  149. 149.

    Tang, Y.J., Zheng, S.S., Xu, Y.X., et al.: Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 12, 284–309 (2018). https://doi.org/10.1016/j.ensm.2018.02.010

    Article  Google Scholar 

  150. 150.

    Yuan, C.J., Lin, H.B., Lu, H.Y., et al.: Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl. Energy 178, 260–268 (2016). https://doi.org/10.1016/j.apenergy.2016.06.057

    CAS  Article  Google Scholar 

  151. 151.

    Wu, J.F., Zhang, Q.N., Wang, J.J., et al.: A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 11, 1280–1286 (2018). https://doi.org/10.1039/c8ee00078f

    CAS  Article  Google Scholar 

  152. 152.

    Wang, H.Q., Zhang, C.F., Chen, Z.X., et al.: Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81, 782–787 (2015). https://doi.org/10.1016/j.carbon.2014.10.024

    CAS  Article  Google Scholar 

  153. 153.

    Ning, X.L., Li, F., Zhou, Y., et al.: Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chem. Eng. J. 328, 599–608 (2017). https://doi.org/10.1016/j.cej.2017.07.062

    CAS  Article  Google Scholar 

  154. 154.

    Yang, M., Kim, D.S., Hong, S.B., et al.: MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir 33, 5140–5147 (2017). https://doi.org/10.1021/acs.langmuir.7b00589

    CAS  Article  PubMed  Google Scholar 

  155. 155.

    Yu, P.P., Zhang, Z.M., Zheng, L.X., et al.: A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 6, 1601111 (2016). https://doi.org/10.1002/aenm.201601111

    CAS  Article  Google Scholar 

  156. 156.

    Xiong, W., Hu, X., Wu, X., et al.: A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@polypyrrole core–shell nanowires on hemp-derived carbon. J. Mater. Chem. A 3, 17209–17216 (2015). https://doi.org/10.1039/c5ta04201a

    CAS  Article  Google Scholar 

  157. 157.

    Wu, X.L., Wen, T., Guo, H.L., et al.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013). https://doi.org/10.1021/nn400566d

    CAS  Article  PubMed  Google Scholar 

  158. 158.

    Song, W.L., Li, X.G., Fan, L.Z.: Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Mater. 3, 113–122 (2016). https://doi.org/10.1016/j.ensm.2016.01.010

    Article  Google Scholar 

  159. 159.

    Kim, S.K., Kim, Y.K., Lee, H., et al.: Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. ChemSusChem 7, 1094–1101 (2014). https://doi.org/10.1002/cssc.201301061

    CAS  Article  PubMed  Google Scholar 

  160. 160.

    Hu, S., Rajamani, R., Yu, X.: Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 100, 104103 (2012). https://doi.org/10.1063/1.3691948

    CAS  Article  Google Scholar 

  161. 161.

    Deng, L.B., Young, R.J., Kinloch, I.A., et al.: Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Inter. 5, 9983–9990 (2013). https://doi.org/10.1021/am403622v

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21905220, 21875141, 51772240, 21503158), the Key Research and Development Plan of Shanxi Province (China, Grant No. 2018 ZDXM-GY-135), the Fundamental Research Funds for the “Young Talent Support Plan” of Xi’an Jiaotong University (HG6J003) the Shanghai Pujiang Program (18PJ1409000) and the Shanghai Scientific and Technological Innovation Project (19JC1410400). Financial support provided by the Australian Research Council (ARC) (DP200101862) is also gratefully acknowledged. We would further like to thank Dr. T. Silver for her critical reading of this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Tang or Chengxin Peng or Zaiping Guo.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, S., Zhou, YN. et al. Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochem. Energ. Rev. (2021). https://doi.org/10.1007/s41918-020-00090-3

Download citation

Keywords

  • Biomass-derived carbonaceous
  • Electrodes
  • Structural engineering
  • Doping effects
  • Supercapacitors