Skip to main content
Log in

Numerical and Experimental Study of the Fume Chemical Composition in Gas Metal Arc Welding

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Primary particles’ sizes and chemical composition during gas metal arc welding are studied by the welding fume evolution numerical modeling. The inhalable particles’ chemical composition and specific surface area are studied experimentally. The dependencies of both the particles’ sizes and chemical composition on the vapor–gas mixture cooling rate are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

d :

Particle diameter

e :

Electron charge

E :

Energy

\(E_{\text{s}}\) :

Surface electric field

\(f_{\text{N}}\) :

Size distribution

g :

Component mass fraction

G :

Gibbs free energy

I :

Ionization potential

\(j_{\text{ph}}\) :

Photon flux

\(k_{\text{B}}\) :

Boltzmann constant

\(K_{\text{S}}\) :

Saha constant

\(m_{\text{a}}\) :

Mass of condensable atoms

M():

Moment of size distribution

n :

Number density

N :

Number of atoms in particle

P :

Pressure

r :

Spherical coordinate, radius

\(r_{\text{D}}\) :

Screening length

S :

Supersaturation

T :

Temperature

\(v_{\text{T}}\) :

Thermal velocity

\(V_{\text{b}}\) :

Potential barrier

W :

Work function

X :

Component fraction

z :

Particle charge

\(\beta \) :

Collision kernel

\(\varphi \) :

Electric potential

\(\gamma \) :

Surface free energy

\(\mu \) :

Molecular mass

\(\nu _{\text{e}}\) :

effective electron state density

\(\rho \) :

Density of matter

\(\tau \) :

Time scale

\(\sigma \) :

Standard deviation

\(\Sigma \) :

Statistical weight

References

  • Bogaerts A, Eckert M, Mao M, Neyts E (2011) Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials. J Phys D Appl Phys 44:174030

    Article  Google Scholar 

  • Carpenter KR, Monaghan BJ, Norrish J (2008) Influence of shielding gas on fume size morphology and particle composition for gas metal arc welding. Iron Steel Inst Jpn Int 48:1570–1576

    Article  Google Scholar 

  • Cohen ER, Vaughan EU (1971) Approximate solution of the equations for aerosol agglomeration. J Colloid Interface Sci 35:612–623

    Article  Google Scholar 

  • Denysenko I, Azarenkov NA (2011) Formation of vertically aligned carbon nanostructures in plasmas: numerical modelling of growth and energy exchange. J Phys D Appl Phys 44:174031

    Article  Google Scholar 

  • Ennan AA, Kiro SA, Oprya MV, Vishnyakov VI (2013) Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding. J Aerosol Sci 64:103–110

    Article  Google Scholar 

  • Fortov VE, Khrapak AG, Khrapak SA, Molotkov VI, Petrov OF (2004) Dusty plasmas. Phys Uspekhi 47:447–492

    Article  Google Scholar 

  • Girshick SL, Warthesen SJ (2006) Nanoparticles and plasmas. Pure Appl Chem 78:1109–1116

    Article  Google Scholar 

  • Goree J (1994) Charging of particles in plasma. Plasma Sour Sci Technol 3:400–406

    Article  Google Scholar 

  • Green H, Lane W (1964) Particulate clouds: dusts, smokes and mists, 2nd edn. Van Nostrand, New York

    Google Scholar 

  • Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Article  Google Scholar 

  • Okuyama M, Zung JT (1967) Evaporation–condensation coefficient for small droplets. J Chem Phys 46:1580–1585

    Article  Google Scholar 

  • Pratsinis SE (1988) Simultaneous nucleation, condensation and coagulation in aerosol reactors. J Colloid Interface Sci 124:416–427

    Article  Google Scholar 

  • Reist PC (1984) Introduction to aerosol science. Macmillan Publishing, New York

    Google Scholar 

  • Sanibondi P (2015) Numerical investigation of the effects of iron oxidation reactions on the fume formation mechanism in arc welding. J Phys D Appl Phys 48:345202

    Article  Google Scholar 

  • Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy AB (2010) Modelling of gas–metal arc welding taking into account metal vapor. J Phys D Appl Phys 43:434008

    Article  Google Scholar 

  • Seigneur C, Hudischewskyj AB, Seinfeld JH, Whitby KT, Whitby ER, Brock JR, Barnes HM (1986) Simulation of aerosol dynamics: a comparative review of mathematical models. Aerosol Sci Technol 5:205–222

    Article  Google Scholar 

  • Shigeta M, Watanabe T, Nishiyama H (2004) Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma. Thin Solid Films 457:192–200

    Article  Google Scholar 

  • Shu Q, Yang Y, Zhai Y, Sun DM, Xiang HJ, Gong XG (2012) Size-dependent melting behavior of iron nanoparticles by replica exchange molecular dynamics. Nanoscale 4:6307–6311

    Article  Google Scholar 

  • Smirnov BM (1997) Processes in plasma and gases involving clusters. Phys Uspekhi 40:1117–1147

    Article  Google Scholar 

  • Tashiro S, Zeniya T, Murphy AB, Tanaka M (2013) Visualization of fume formation process in arc welding with numerical simulation. Surf Coat Technol 228:S301–S305

    Article  Google Scholar 

  • Villermaux E, Rehab H (2000) Mixing in coaxial jets. J Fluid Mech 425:161–185

    Article  Google Scholar 

  • Vishnyakov VI (2005) Interaction of dust grains in strong collision plasmas: diffusion pressure of nonequilibrium charge carriers. Phys Plasmas 12:103502

    Article  Google Scholar 

  • Vishnyakov VI (2006) Electron and ion number densities in the space charge layer in thermal plasmas. Phys Plasmas 13:033507

    Article  Google Scholar 

  • Vishnyakov VI (2008) Homogeneous nucleation in thermal dust-electron plasmas. Phys Rev E 78:056406

    Article  Google Scholar 

  • Vishnyakov VI, Dragan GS (2003) Thermodynamic reasons of agglomeration of dust particles in the thermal dusty plasma. Condens Matter Phys 6:687–692

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Ennan AA (2011) Heterogeneous ion-induced nucleation in thermal dusty plasmas. J Phys D Appl Phys 44:215201

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Ennan AA (2013) Formation of primary particles in welding fume. J Aerosol Sci 58:9–16

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Ennan AA (2014a) Bimodal size distribution of primary particles in the plasma of welding fume: coalescence of nuclei. J Aerosol Sci 67:13–20

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Ennan AA (2014b) Multicomponent condensation in the plasma of welding fumes. J Aerosol Sci 74:1–10

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Oprya MV, Ennan AA (2014c) Coagulation of charged particles in self-organizing thermal plasmas of welding fumes. J Aerosol Sci 76:138–147

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Oprya MV, Ennan AA (2016) Charge distribution of welding fume particles after charging by corona ionizer. J Aerosol Sci 94:9–21

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Oprya MV, Shvetz OI, Ennan AA (2017a) Nonequilibrium ionization of welding fume plasmas; effect of potassium additional agent on the particle formation. J Aerosol Sci 113:178–188

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Oprya MV, Ennan AA (2017b) Effects of shielding gas temperature and flow rate on the welding fume particle size distribution. J Aerosol Sci 114:55–61

    Article  Google Scholar 

  • Yu M, Lin J, Chan T (2008) A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci Technol 42:705–713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vishnyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakov, V.I., Kiro, S.A., Oprya, M.V. et al. Numerical and Experimental Study of the Fume Chemical Composition in Gas Metal Arc Welding. Aerosol Sci Eng 2, 109–117 (2018). https://doi.org/10.1007/s41810-018-0028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-018-0028-2

Keywords

Navigation