Skip to main content
Log in

The nonlinear heat equation involving highly singular initial values and new blowup and life span results

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper we prove local existence of solutions to the nonlinear heat equation \(u_t = \Delta u +a |u|^\alpha u, \; t\in (0,T),\; x=(x_1,\ldots , x_N)\in {\mathbb {R}}^N,\; a = \pm 1,\; \alpha >0;\) with initial value \(u(0)\in L^1_{\mathrm{{loc}}}({\mathbb {R}}^N{\setminus }\{0\}),\) anti-symmetric with respect to \(x_1,\; x_2,\ldots , x_m\) and \(|u(0)|\le C(-1)^m\partial _{1}\partial _{2}\cdots \partial _{m}(|x|^{-\gamma })\) for \(x_1>0,\ldots , x_m>0,\) where \(C>0\) is a constant, \(m\in \{1, 2,\ldots , N\},\) \(0<\gamma <N\) and \(0<\alpha <2/(\gamma +m).\) This gives a local existence result with highly singular initial values. As an application, for \(a=1,\) we establish new blowup criteria for \(0<\alpha \le 2/(\gamma +m),\) including the case \(m=0.\) Moreover, if \((N-4)\alpha <2,\) we prove the existence of initial values \(u_0 = \lambda f,\) for which the resulting solution blows up in finite time \(T_{\max }(\lambda f),\) if \(\lambda >0\) is sufficiently small. We also construct blowing up solutions with initial data \(\lambda _n f\) such that \(\lambda _n^{[({1\over \alpha }-{\gamma +m\over 2})^{-1}]}T_{\max }(\lambda _n f)\) has different finite limits along different sequences \(\lambda _n\rightarrow 0.\) Our result extends the known “small lambda” blow up results for new values of \(\alpha\) and a new class of initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandle, C., Levine, H.A.: On the existence and nonexistence of global solutions of reaction–diffusion equations in sectorial domains. Trans. AMS 316, 595–622 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

  3. Brézis, H., Friedman, A.: Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62, 73–97 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Cazenave, T., Dickstein, F., Escobedo, M., Weissler, F.B.: Self-similar solutions of a nonlinear heat equation. J. Math. Sci. Univ. Tokyo 8, 501–540 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Cazenave, T., Dickstein, F., Weissler, F.B.: Universal solutions of the heat equation in \({\mathbb{R}}^{N}\). Discrete Contin. Dyn. Syst. 9, 1105–1132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cazenave, T., Dickstein, F., Weissler, F.B.: Multi-scale multi-profile global solutions of parabolic equations in \({\mathbb{R}}^{N}\). Discrete Contin. Dyn. Syst. Ser. S 5, 449–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickstein, F.: Blowup stability of solutions of the nonlinear heat equation with a large life span. J. Differ. Equ. 223, 303–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fermanian Kammerer, C., Merle, F., Zaag, H.: Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view. Math. Ann. 317, 347–387 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghoul, T.: An extension of Dickstein’s “small lambda” theorem for finite time blowup. Nonlinear Anal. T.M.A. 74, 6105–6115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53, 483–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giga, Y., Matsui, S., Sasayama, S.: On blow up rate for sign-changing solutions in a convex domain. Math. Methods Appl. Sci. 27, 1771–1782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gui, C., Wang, X.: Life span of solutions of the Cauchy problem for a semilinear heat equation. J. Differ. Equ. 115, 166–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kavian, O.: Remarks on the large time behaviour of a nonlinear diffusion equation. Ann. I. H. Poincaré Anal. Non Linéaire 4, 423–452 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, T.Y., Ni, W.M.: Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem. Trans. Am. Math. Soc. 333, 365–378 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levine, H.A., Meier, P.: The value of the critical exponent for reaction–diffusion equations in cones. Arch. Ration. Mech. Anal. 109, 73–80 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meier, P.: Existence et non-existence de solutions globales d’une équations de la chaleur semi-linéaire: extention d’un théoreme de Fujita. C. R. Acad. Sci. Paris Ser. I(303), 635–637 (1986)

    MATH  Google Scholar 

  17. Meier, P.: Blow up of solutions of semilinear parabolic differential equations. Z. Angew. Math. Phys. 39, 135–149 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mizoguchi, N., Yanagida, E.: Blowup and life span of solutions for a semilinear parabolic equation. SIAM J. Math. Anal. 29, 1434–1446 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Molinet, L., Tayachi, S.: Remarks on the Cauchy problem for the one-dimensional quadratic (fractional) heat equation. J. Funct. Anal. 269, 2305–2327 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mouajria, H., Tayachi, S., Weissler, F.B.: The heat equation on sectorial domains, highly singular initial values and applications. J. Evol. Equ. 16, 341–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mueller, C.E., Weissler, F.B.: Single point blow-up for a general semilinear heat equation. Indiana Univ. Math. J. 34, 881–913 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quittner, P., Souplet, Ph: Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  23. Ribaud, F.: Semilinear parabolic equations with distributions as initial values. Discrete Contin. Dyn. Syst. 3, 305–316 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rouchon, P.: Blow-up of solutions of nonlinear heat equations in unbounded domains for slowly decaying initial data. ZAMP 52, 1017–1032 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Souplet, Ph, Weissler, F.B.: Self-similar sub-solutions and blow-up for nonlinear parabolic equations. J. Math. Anal. Appl. 212, 60–74 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tayachi, S., Weissler, F.B.: The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values. Trans. AMS 366, 505–530 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tayachi, S., Weissler, F.B.: Some remarks on life span results (in preparation)

  28. Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Isr. J. Math. 38, 29–40 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weissler, F.B.: \(L^p\)-energy and blow-up for a semilinear heat equation. Proc. Symp. Pure Math. 45(Part 2), 545–551 (1986)

    Article  Google Scholar 

  30. Wu, J.: Well-posedness of a semilinear heat equation with weak initial data. J. Fourier Anal. Appl. 4, 629–642 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred B. Weissler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayachi, S., Weissler, F.B. The nonlinear heat equation involving highly singular initial values and new blowup and life span results. J Elliptic Parabol Equ 4, 141–176 (2018). https://doi.org/10.1007/s41808-018-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-018-0014-5

Keywords

Mathematics Subject Classification

Navigation