Water Vapor Permeability of Chitosan/Zeolite Composite Films as Affected by Biopolymer and Zeolite Microparticle Concentrations


This work evaluated the effect of chitosan and zeolite microparticle concentrations on the water vapor permeability of composite films. In addition, others chemical, thermal, and physical properties of selected films were determined. Chitosan/zeolite composite films were prepared via the solution casting method using chitosans from chitin from common lobster (Panulirus argus) (77 and 275 kDa and ~ 75% of deacetylation degree) and natural zeolite (Ø = 35–45 µm). Chitosan concentration (1.5–2.0% w/v), zeolite microparticle concentration (0.0–7.0% w/w of chitosan), and molecular weight (MW) of chitosan were selected as factors through an IV optimal response surface design for the best variant of film based on the water vapor permeability (WVP). The WVP increased with an increase in the chitosan and zeolite concentration as well as the MW, being the film obtained from 1.5% (w/v) of chitosan (77 kDa) and 3.5% (w/w of chitosan) of zeolite, the film with the lower WVP. The increase in the chitosan concentration and zeolite addition at 3.5% (w/w of chitosan) decreased the elongation at break, while increased the tensile strength of the films. Water solubility increased with the polymer concentration, while that it was lower (p ≤ 0.05) for composite films with 3.5% (w/w of chitosan) zeolite. The brightness and b* value of the films decreased with the addition of zeolite at 3.5% (w/w of chitosan) for a same polymer concentration. The opacity did not change significantly (p > 0.05), although there was a tendency to decrease with the increase in the chitosan concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionano-composite film incorporating rosemary essential oil and nano-clay into chitosan. J Food Eng 111(2):343–350

    Google Scholar 

  2. 2.

    Adamis Z, Tátrai E, Honma K, Six E, Ungváry G (2000) In vitro and in vivo tests for determination of the pathogenicity of quartz, diatomaceous earth, mordenite and clinoptilolite. Ann Occup Hyg 44(1):67–74

    Google Scholar 

  3. 3.

    Alver E, Metin AÜ, Çiftçi H (2014) Synthesis and characterization of chitosan/polyvinylpyrrolidone/zeolite composite by solution blending method. J Inorg Organomet Polym 24:1048–1054

    Google Scholar 

  4. 4.

    Amarante C, Banks NH (2001) Postharvest physiology and quality of coated fruit and vegetables. Hort Reviews 26:161–214

    Google Scholar 

  5. 5.

    Anari-Anaraki M, Nezamzadeh-Ejhieh A (2015) Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J Colloid Interface Sci 440:272–281

    Google Scholar 

  6. 6.

    Ansorena MR, Marcovich NE, Pereda M (2018) Food Biopackaging Based on Chitosan. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of Ecomaterials. Springer, Cham

    Google Scholar 

  7. 7.

    ASTM D 882-91 (1995) Standard test methods for tensile properties of thin plastic sheeting. In: Annual book of ASTM standards. American Society for Testing and Materials. ASTM International, Philadelphia

    Google Scholar 

  8. 8.

    Barbosa GP, Debone HS, Severino P, Souto EB, da Silva CF (2016) Design and characterization of chitosan/zeolite composite films—effect of zeolite type and zeolite dose on the film properties. Mat Sci Eng C 60:246–254

    Google Scholar 

  9. 9.

    Batista ACL, Villanueva ER, Amorim RV, Tavares MT, Campos-Takaki GM (2011) Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film. Molecules 16:3569–3579

    Google Scholar 

  10. 10.

    Cappelletti P, Colella A, Langella A, Mercurio M, Catalanotti L, Monetti V, de Gennaro B (2017) Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks. Micropor Mesopor Mat 250:232–244

    Google Scholar 

  11. 11.

    Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Díaz R, Vicente AA (2009) Chitosan/clay films properties as affected by biopolymer and clay micro/nanoparticles concentrations. Food Hydrocolloid 23:1895–1902

    Google Scholar 

  12. 12.

    Casariego A, Souza BWS, Vicente AA, Teixeira JA, Cruz L, Díaz R (2008) Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloid 22:1452–1459

    Google Scholar 

  13. 13.

    Cervera MF, Heinämäki J, Räsänen M, Maunu SL, Karjalainen M, Acosta OMN, Colarte AI, Yliruusi J (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58(4):401–408

    Google Scholar 

  14. 14.

    Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Study on physical properties and nerve cell affinity of composite films from chitosans and gelatin solutions. Biomaterials 24:2871–2880

    Google Scholar 

  15. 15.

    Cho S, Rhee C (2004) Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT 37:833–839

    Google Scholar 

  16. 16.

    Choudalakis G, Gotsis AD (2009) Macromolecular nanotechnology—review permeability of polymer/clay nanocomposites: a review. European Polym J 45(4):4967–4984

    Google Scholar 

  17. 17.

    Cossío G, Casariego A, González J, Díaz R, Fernández SA, Ramírez A (2002) Alimentaria: Revista de Tecnología e Higiene de los Alimentos. Alimentari 336:21–24

    Google Scholar 

  18. 18.

    Cussler EL, Highes SE, Ward WJ, Aris R (1998) Barrier membranes. J Memb Sci 38:161–174

    Google Scholar 

  19. 19.

    Depan D, Kumar A, Singh RP (2006) Preparation and characterization of novel hybrid of chitosan-g-lactic acid and montmorillonite. J Biomed Mater Res A 51:372–382

    Google Scholar 

  20. 20.

    Díaz R, Casariego A, Rodríguez J, Martínez AL, García MA (2010) Coberturas de quitosana como método de envasado activo en vegetales enteros y cortados. Cienc Technol Alim 20(2):31–36

    Google Scholar 

  21. 21.

    Dirim N, Esin A, Bayindirle A (2003) A new protective polyethylene based film containing zeolites for the packaging of fruits and vegetables: film preparation. Turkish J Eng Env Sci 27:1–9

    Google Scholar 

  22. 22.

    Dovale-Rosabal G, Casariego A, Forbes-Hernández TY, García MA (2015) Effect of chitosan-olive oil emulsion coating on quality of tomatoes during storage at ambient conditions. J Berry Res 5:207–218

    Google Scholar 

  23. 23.

    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Google Scholar 

  24. 24.

    Fernández M, Heinämäki J, Rasanen M, Maunu SL, Karjalainen M, Nieto OM, Iraizoz A, Yliruusi J (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58:401–408

    Google Scholar 

  25. 25.

    García MA, Casariego A, Acuña JA (2015) Influencia de coberturas de quitosana en los atributos físico-químicos de pepinos durante su almacenamiento refrigerado. Cienc Tecnol Alim 25(3):62–67

    Google Scholar 

  26. 26.

    García MA, Casariego A, Díaz R, Roblejo L (2014) Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir J Food Agric 26(3):238–246

    Google Scholar 

  27. 27.

    García MA, de la Paz N, Castro C, Rodríguez JL, Rapado M, Zuluaga R, Gañán P, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on the antioxidant activity of chitosan. J Radiat Res Appl Sci 8:190–200

    Google Scholar 

  28. 28.

    García MA, García YP, Calderín L, de la Paz N (2015) Empleo de coberturas de sales ácidas de quitosana en la conservación de piña mínimamente procesada. Cienc Tecnol Alim 25(1):31–36

    Google Scholar 

  29. 29.

    García MA, Pérez L, de la Paz N, González J, Rapado M, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on chitosan film properties. Mater Sci Eng, C 55:174–180

    Google Scholar 

  30. 30.

    García MA, Pinotti A, Martino MN, Zaritzky NE (2004) Characterization of composite hydrocolloid films. Carbohydr Polym 56(3):339–345

    Google Scholar 

  31. 31.

    García MA, Valdés L, de la Paz N, Rodríguez JL, Casariego A (2014) Plátano en rodajas mínimamente procesado con coberturas de quitosana y ácido ascórbico. Cienc Tecnol Alim 24(3):56–61

    Google Scholar 

  32. 32.

    Gontard N, Guilbert S, Cuq J (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57:190–195

    Google Scholar 

  33. 33.

    Guillard V, Broyart B, Bonazzi C, Guilbert S, Gontard N (2003) Preventing moisture transfer in a composite food using edible films: experimental and mathematical study. J Food Sci 68(7):2267–2277

    Google Scholar 

  34. 34.

    Gutiérrez T (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Scrivener Publishing LLC, Beverly

    Google Scholar 

  35. 35.

    Hashemi J, Neves M, Yoshino T, Nakajima M (2014) Investigation the Effects of Different Composition of Chitosan/Clay on the Nanocomposite Film Properties. [on line]. In: Proceedings International Conference of Agricultural Engineering, Zurich. Consulted in: 2015. www.geyseco.es/geystiona/adjs/comunicaciones/304/P01200002.pdf

  36. 36.

    Ivanković A, Zeljko K, Talić S, Bevanda A, Lasić M (2017) Biodegradable packaging in the food industry. Archiv für lebensmittelhygiene 68:23–52

    Google Scholar 

  37. 37.

    Jumaa M, Furkert FH, Müller BW (2002) A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. Eur J Pharm Biopharm 53:115–123

    Google Scholar 

  38. 38.

    Mahdavi H, Mirzadeh H, Zohuriaan-Mehr MJ, Talebnezhad F (2013) Poly(vinyl alcohol)/chitosan/clay nano-composite films. J Am Sci 9(8):203–214

    Google Scholar 

  39. 39.

    McHugh T, Avena-Bustillos R, Krochta J (1993) Hydrophilic edible film: modified procedure for water vapor permeability and explanation of thickness effects. J Food Sci 58:899–903

    Google Scholar 

  40. 40.

    Nezamzadeh-Ejhieh A, Moeinirad S (2011) Heterogeneous photocatalytic degradation of furfural using NiS-clinoptilolite zeolite. Desalination 273:248–257

    Google Scholar 

  41. 41.

    Ojagh SM, Rezaei M, Razavi SH, Hosseini SM (2010) Development and evaluation of o novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122:161–166

    Google Scholar 

  42. 42.

    Park HJ (1999) Development of advanced edible coatings for fruits. Trends Food Sci Technol 10:254–260

    Google Scholar 

  43. 43.

    Park SY, Marsh KS, Rhim JW (2002) Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J Food Sci Food Eng Phys Prop 67(1):194–197

    Google Scholar 

  44. 44.

    Pavelić K, Hadžija M, Bedrica L, Pavelić J, Ðikić I, Katić M, Kralj M, Bosnar MH, Kapitanović S, Poljak-Blaži M (2001) Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med 78:708–720

    Google Scholar 

  45. 45.

    Peniche CA (2006) Estudios sobre quitina y quitosana. Thesis for obtaining the scientific degree of Doctor in Sciences. Faculty of Chemistry, University of Havana

  46. 46.

    Rahman R, Sood M, Gupta N, Bandral JD, Hameed F, Ashraf S (2019) Bioplastics for Food Packaging: a Review. Int J Curr Microbiol App Sci 8(3):2311–2321

    Google Scholar 

  47. 47.

    Rashid T, Mizanur M, Kabir S, Shamsuddin S, Khan MA (2012) A new approach for the preparation of chitosan from γ-irradiation of prawn shell: effects of radiation on the characteristics of chitosan. Polym Int 61:1302–1308

    Google Scholar 

  48. 48.

    Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Google Scholar 

  49. 49.

    Rodríguez M, Osés J, Ziani K, Maté JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39(8):840–846

    Google Scholar 

  50. 50.

    Sinha S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress Polym Sci 28:1539–1641

    Google Scholar 

  51. 51.

    Takahashi T, Imai M, Suzuki I (2007) Water permeability of chitosan membrane involved in deacetylation degree control. Biochem Eng J 36:43–48

    Google Scholar 

  52. 52.

    Technical Notes (1974) Committee TC13CIE Proposal for study of color spaces and color difference equations. J Opt Soc Am 64(6):896–897

    Google Scholar 

  53. 53.

    Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Food Sci Technol 14(3):71–78

    Google Scholar 

  54. 54.

    Trejo V, Aragon N, Miranda P (2001) Estimación de la permeabilidad al vapor de agua en películas a base de quitosana. Rev Soc Quím México 45(1):1–5

    Google Scholar 

  55. 55.

    Uragami T, Matsuda T, Okuno H, Miyata T (1994) Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of ethanol solutions. J Memb Sci 88:243–251

    Google Scholar 

  56. 56.

    Vargas M, Albors A, Chiralt A, González-Martínez C (2006) Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biol Technol 41:164–171

    Google Scholar 

  57. 57.

    Vargas M, Albors A, Chiralt A, González-Martínez C (2009) Characterization of chitosan-oleic acid composite films. Food Hydrocolloid 23:537–546

    Google Scholar 

  58. 58.

    Wan Ngah WS, Teong LC, Toh RH, Hanafiah MAKM (2012) Utilization of chitosan-zeolite composite in the removal of Cu(II) from aqueous solution: adsorption, desorption and fixed bed column studies. Chem Eng J 209:46–53

    Google Scholar 

  59. 59.

    Wan WS, Teong LC, Wong CS, Hanafiah MAKM (2012) Preparation and characterization of chitosan-zeolite composites. J Applied Polym Sci 125:2417–2425

    Google Scholar 

  60. 60.

    Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413

    Google Scholar 

  61. 61.

    Wang L, Dong Y, Men H, Tong J, Zhou J (2013) Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloid 32:35–41

    Google Scholar 

  62. 62.

    Wang SJ, Liu LM, Fang PF, Chen Z, Wang HM, Zhang SP (2007) Microstructure of polymer clay nanocomposites studied by positrons. Radiat Phys Chem 76:106–111

    Google Scholar 

  63. 63.

    Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer 46:719–724

    Google Scholar 

  64. 64.

    Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    Google Scholar 

  65. 65.

    Yano K, Usuki A, Okad A (1997) Synthesis and properties of polyimideclay hybrid films. J Polym Sci Part A Polym Chem 35:2289–2294

    Google Scholar 

  66. 66.

    Yassue-Cordeiro PH, Zandonai CH, da Silva CF, Fernandes-Machado NRC (2015) Desenvolvimento e caracterização de filmes compósitos de quitosana e zeólitas com prata. Polímeros 25(5):492–502

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mario A. García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, M.A., Rodríguez, M., Castro, C. et al. Water Vapor Permeability of Chitosan/Zeolite Composite Films as Affected by Biopolymer and Zeolite Microparticle Concentrations. J Package Technol Res 4, 157–169 (2020). https://doi.org/10.1007/s41783-020-00092-y

Download citation


  • Chitosan
  • Zeolite
  • Composite films
  • Water vapor permeability
  • Mechanical properties