Skip to main content
Log in

Synthesis, characterization, and UV light-driven photocatalytic properties of CeVO4 nanoparticles synthesized by sol-gel method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

CeVO4 as UV light-driven photocatalyst was synthesized by sol-gel method using tartaric acid as a complexing reagent with subsequent calcination at 450–600 °C for 2 h in ambient air. The as-synthesized products were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The precursor shows two weight loss steps due to the evaporation and decomposition of absorbed water, tartaric acid, and nitrate constituent until at a temperature above 450 °C. XRD patterns of the samples were indexed to tetragonal zircon-type CeVO4 structure. The degree of crystallinity and size of the CeVO4 sample were increased by the high growth rate of CeVO4 nanoparticles at high temperature calcination. Particle sizes of the products were 20–40 nm for CeVO4 with 450 °C calcination and 80–120 nm for CeVO4 with 500 °C calcination. The detection of V–O and Ce–O stretching modes indicates the formation of tetragonal zircon-type CeVO4 structure. The photocatalytic activity of the as-synthesized CeVO4 nanoparticles was evaluated via the degradation of methylene blue (MB) under UV light irradiation. In this research, CeVO4 with 450 °C calcination showed the highest photocatalytic activity of 94.58% within 120 min under UV light irradiation because of the highest available surface active sites for photodegradation of MB under UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ameri, V., Eghbali-Arani, M., Pourmasoud, S.: New route for preparation of cerium vanadate nanoparticles with different morphology and investigation of optical and photocatalytic properties, J. Mate.r Sci.: Mater. Electron. 28 (2017) 18835–18841

  2. Yang, X., Zuo, W., Li, F., Li, T.: Surfactant-free and controlled synthesis of hexagonal CeVO4 nanoplates: Photocatalytic activity and superhydrophobic property. ChemistryOpen. 4, 288–294 (2015)

    Article  CAS  Google Scholar 

  3. Phuruangrat, A., Thongtem, S., Thongtem, T.: Ultrasonic-assisted synthesis and photocatalytic performance of ZnO nanoplates and microflowers. Mater Des. 107, 250–256 (2016)

    Article  CAS  Google Scholar 

  4. Phuruangrat, A., Dumrongrojthanath, P., Yayapao, O., Thongtem, T., Thongtem, S.: Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation. Mater. Sci. Semicond. Process. 26, 329–335 (2014)

  5. Sharma, J.N., Pattadar, D.K., Mainali, B.P., Zamborini, F.P.: Size determination of metal aanoparticles based on electrochemically measured surface-area-to-volume ratios. Anal. Chem. 90, 9308–9314 (2018)

  6. Jin, R., Liu, C., Sun, L., Zhang, Z., Chen, G.: Solvothermal synthesis of yolk–shell CeVO4/C microspheres as a high-performance anode for lithium-ion Bbtteries. Chem. Electro. Chem. 3, 644–649 (2016)

  7. Moussa, M., Djermouni, M., Kacimi, S., Azzouz, M., Dahani, A., Zaoui, A.: First-principles calculations of structural, magnetic phase stability and electronic properties of RVO4 compounds. Comput. Mater. Sci. 68, 361–366 (2013)

  8. Bishnoi, S., Chawla, S.: Enhancement of GdVO4:Eu3+ red fluorescence through plasmonic effect ofsilver nanoprisms on Si solar cell surface. J Appl Res Tech. 15, 102–109 (2017)

    Article  Google Scholar 

  9. He, J., Zhao, J., Run, Z., Sun, M., Pang, H.: Ultrathin cerium orthovanadate nanobelts for high-performance flexible all-solid-dtate asymmetric supercapacitors. Chem. Asian. J. 10, 338–343 (2015)

  10. Denisova, L.T., Chumilina, L.G., Kargin, Y.F., Denisov, V.M.: Synthesis of the CeVO4 orthovanadate and its heat capacity in the range 350–1000 K. Inorg. Mater. 52, 44–47 (2016)

  11. Wang, Y., Zuo, R., Zhang, C., Zhang, J., Zhang, T.: Low-temperature-fired ReVO4 (re = La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc. 98, 1–4 (2015)

  12. Ding, J., Liu, X., Wang, M., Liu, Q., Sun, T., Jiang, G., Tang, Y.: Controlled synthesis of CeVO4 hierarchical hollow microspheres with tunable hollowness and their efficient photocatalytic activity. CrystEngComm. 20, 4499–4505 (2018)

    Article  CAS  Google Scholar 

  13. Guang, L., Xuejun, Z., Fei, W., Hui, W., Wei, L.: Facile fabrication of CeVO4 microspheres with efficient visible light photocatalytic activity. Mater. Lett. 195, 168–171 (2017)

  14. Zain, J.H., Grover, V., Ramkumar, J., Bhattacharyya, K., Tyagi, A.K.: Mo-substituted CeVO4 system: solid solution formation and implications on sorption behavior. J. Mater. Sci. 50, 5690–5704 (2020)

  15. Rahimi-Nasrabadi, M., Ahmadi, F., Fosooni, A.: Influence of capping agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci. Mater. Electron. 28, 537–542 (2017)

  16. Mahapatra, S., Nayak, S.K., Madras, G., Row, T.N.G.: Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates. Ind. Eng. Chem. Res. 47, 6509–6516 (2008)

  17. Ekthammathat, N., Thongtem, T., Phuruangrat, A., Thongtem, S.: Synthesis and characterization of CeVO4 by microwave radiation method and its photocatalytic activity, J. Nanomater. 2013 (2013) 1–7 Article ID 434197

  18. Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., Oza, R.: Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 3, 189–196 (2018)

  19. Muthee, D.K., Dejene, B.F.: The effect of tetra isopropyl orthotitanate (TIP) concentration on structural, and luminescence properties of titanium dioxide nanoparticles prepared by sol-gel method. Mater. Sci. Semicond. Process. 106, 104783 (2020)

  20. Triyono, D., Hanifah, U., Laysandra, H.: Structural and optical properties of mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method. Results Phys. 16, 102995 (2020)

    Article  Google Scholar 

  21. Huang, L., Sun, Y., Li, M., Yi, Y., Jiang, L., Fang, L.: Sol-gel derived Al and Ga co-doped ZnO nanoparticles: structural, morphological and optical investigation. Optik. 192, 162942 (2019)

    Article  CAS  Google Scholar 

  22. Jeevanandam, J., Chan, Y.S., Danquah, M.K.: Effect of gelling agent and calcination temperature in sol–gel synthesized MgO nanoparticles. Prot. Met. Phys. Chem. Surf. 55, 288–301 (2019)

  23. Mastuli, M.S., Kamarulzaman, N., Nawawi, M.A., Mahat, A.M., Rusdi, R., Kamarudin, N.: Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale. Res. Lett. 9, 134 (2014)

  24. A. Modwi, M.A. Abbo, E.A. Hassan, A. Houas, Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol–gel method, J. Mater. Sci.: Mater. Electron. 27 (2016) 12974–12984

  25. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, U.S.A., (2001)

    Google Scholar 

  26. Othman, I., Zain, J.H., Haija, M.A., Banat, F.: Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: an insight into the reaction pathway. Appl. Catal. B. 266, 118601 (2020)

  27. Sa-nguanprang, S., Phuruangrat, A., Thongtem, T., Thongtem, S.: Synthesis, analysis, and photocatalysis of Mg-doped ZnO nanoparticles. Russ. J. Inorg. Chem. 64, 1841–1848 (2019)

  28. Sa-nguanprang, S., Phuruangrat, A., Karthik, K., Thongtem, S., Thongtem, T.: Tartaric acid-assisted precipitation of visible light-driven Ce-doped ZnO nanoparticles used for photodegradation of methylene blue. J. Aust. Ceram. Soc. 56, 1029–1041 (2020)

  29. Rahmani, M., Sedaghat, T.: A facile sol–gel process for synthesis of ZnWO4 nanopartices with enhanced band gap and study of ots photocatalytic activity for degradation of methylene blue. J. Inorg. Organomet. Polym. Mater. 29, 220–228 (2019)

  30. Venkatesh, D., Pavalamalar, S., Anbalagan, K.: Selective photodegradation on dual dye system by recoverable nano SnO2 photocatalyst. J. Inorg. Organomet. Polym. Mater. 29, 939–953 (2019)

  31. Tang, Q., Wu, W., Zhang, H., Luo, J., Zhang, B., Guo, X., Jia, J., Cao, J.: In situ ion exchange synthesis of cauliflower-like AgBr/Ag3PO4/sulfonated polystyrene sphere heterojunction photocatalyst with enhanced photocatalytic activity. J. Inorg. Organomet. Polym. Mater. 29, 1154–1159 (2019)

  32. Liu, C., Zhang, X., Wu, J., Meng, G., Guo, X., Liu, Z.: One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction. Appl. Phys. A. Mater. Sci. Process. 122, 946 (2016)

  33. Wang, Q., Yu, S., Qin, W., Wu, X.: Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamics. Nanoscale. Adv. 23, 274–285 (2020)

  34. Wang, S., Li, D., Yang, C., Sun, G., Zhang, J., Xia, Y., Xie, C., Yang, G., Zhou, M., Liu, W.: A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts. J. Sol-Gel. Sci. Technol. 84, 169–179 (2017)

  35. Mishra, S., Priyadarshinee, M., Debnath, A.K., Muthe, K.P., Mallick, B.C., Das, N., Parhi, P.: Rapid microwave assisted hydrothermal synthesis cerium vanadate nanoparticle and its photocatalytic and antibacterial studies. J. Phys. Chem. Solids. 137, 109211 (2020)

Download references

Funding

We wish to thank the Center of Excellence in Materials Science and Technology, Chiang Mai University, for the financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuruangrat, A., Thongtem, S. & Thongtem, T. Synthesis, characterization, and UV light-driven photocatalytic properties of CeVO4 nanoparticles synthesized by sol-gel method. J Aust Ceram Soc 57, 597–604 (2021). https://doi.org/10.1007/s41779-021-00566-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00566-5

Keywords

Navigation