Synthesis and characterization of Ag-doped CeO2 powders

Abstract

In this study, the experimental characterization of cerium oxide (CeO2) powders doped with Ag at various amounts of 1, 2, 3, and 4 at.% was done using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and vibrating sample magnetometry (VSM). The formation of the single phase of CeO2, having the cubic crystal structure, for all samples was observed. The phase structure was not affected by the as-used Ag contents. The addition of Ag caused an increase in the lattice parameter and a decrease in the crystallinity. In addition to these, non-gradual changes in the crystallite size were observed. The thermal stability for each sample was seen for each sample until 1000 °C. The morphology composed of the microparticles was observed. The magnetization and magnetic susceptibility values were affected by the amount of Ag dopant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ansari, S., Ansari, M.S., Dev, N., Satsangee, S.P.: CeO2 nanoparticles based electrochemical sensor for an anti-anginal drug. Mater. Today Proc. 18, 1210–1219 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    Yousef, A., Al-Enizi, A.M., Mohamed, I.M.A., El-Halwany, M.M., Ubaidullah, M., Brooks, R.M.: Synthesis and characterization of CeO2/rGO nanoflakes as electrode material for capacitive deionization technology. Ceram. Int. 46, 15034–15043 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    Dao, D.V., Adilbish, G., Le, T.D., Nguyen, T.T.D., Lee, I.-H., Yu, Y.-T.: Au@CeO2 nanoparticles supported Pt/C electrocatalyst to improve the removal of CO in methanol oxidation reaction. J. Catal. 377, 589–599 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Ríos-Saldaña, L.E., Compeán-García, V.D., Moreno-García, H., Rodríguez, A.G.: Improvement of the conversion efficiency of as-deposited Bi2S3/PbS solar cells using a CeO2 buffer layer. Thin Solid Films. 670, 93–98 (2019)

    Article  CAS  Google Scholar 

  5. 5.

    Khan, A.J., Hanif, M., Javed, M.S., Hussain, S., Zhong, W., Saleem, M., Liu, Z.: Energy storage properties of hydrothermally processed, nanostructured, porous CeO2 nanoparticles. J. Electroanal. Chem. 865, 114158 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    Ma, T., Wang, L., Chang, C., Akhatov, J.S., Fu, M., Li, X.: A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction. Renew. Energy. 143, 915–921 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Tao, L., Shi, Y., Huang, Y.-C., Chen, R., Zhang, Y., Huo, J., Zou, Y., Yu, G., Luo, J., Dong, C.-L., Wang, S.: Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy. 53, 604–612 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Xie, H., Mao, L., Mao, J.: Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performance for supercapacitor. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.127826

  9. 9.

    Gayathri, R., Raja, G., Rajeswaran, P.: A simple and one step low cost microwave induced low cost grapheme modified CeO2 photo electrodes for high-efficiency dye-sensitized solar cells. Inorg. Chem. Commun. 120, 108132 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    Salimi, K.: Self-assembled bio-inspired au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 599, 124908 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    Jing, Y., Lund, P., Asghar, M.I., Li, F., Zhu, B., Wang, B., Zhou, X., Chen, C., Fan, L.: Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceram. Int. 46, 29290–29296 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    Aboutaleb, W.A., El-Salamony, R.A.: Effect of Fe2O3-CeO2 nanocomposite synthesis method on the Congo red dye photodegradation under visible light irradiation. Mater. Chem. Phys. 236, 121724 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Hu, J., Sun, Y., Xue, Y., Zhang, M., Li, P., Lian, K., Zhuiykov, S., Zhang, W., Chen, Y.: Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors Actuators B Chem. 257, 124–135 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    Nallabala, N.K.R., Godavarthi, S., Kummara, V.K., Kesarla, M.K., Saha, D., Akkera, H.S., Guntupalli, G.K., Kumar, S., Vattikuti, S.V.P.: Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type Au/Ni/CeO2/GaN Schottky barrier ultraviolet photodetector. Mater. Sci. Semicond. Process. 117, 105190 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    Li, Y., Dong, X., Gao, J., Hei, D., Zhou, X., Zhang, H.: A highly sensitive γ-radiation dosimeter based on the CeO2 nanowires. Phys. E Low Dimens. Syst. Nanostruct. 41, 1550–1553 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    Li, Y.-Y., Dong, X., Zhang, H.-Q.: CeO2 nanowires aqueous γ-radiation dosimeter for low dose sensitively detecting. Proc. Eng. 52, 202–207 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    Wang, J., Li, Z., Zhang, S., Yan, S., Cao, B., Wang, Z., Fu, Y.: Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sensors Actuators B Chem. 255, 862–870 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Hussain, S., Aslam, N., Yang, X., Javed, M.S., Xu, Z., Wang, M., Liu, G., Qiao, G.: Unique polyhedron CeO2 nanostructures for superior formaldehyde gassensing performances. Ceram. Int. 44, 19624–19630 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Li, P., Wang, B., Li, W., Qin, C., Sun, L., Wu, N., Wang, Y.: Effect of annealing atmosphere with different oxygen concentration on CO gas sensing performances for CeO2 nanoparticles. Mater. Lett. 284, 129000 (2021)

    CAS  Article  Google Scholar 

  20. 20.

    Li, Z., Niu, X., Lin, Z., Wang, N., Shen, H., Liu, W., Sun, K., Fu, Y.Q., Wang, Z.: Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloys Compd. 682, 647–653 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Van Dao, D., Nguyen, T.T.D., Majhi, S.M., Adilbish, G., Lee, H.-J., Yu, Y.-T., Lee, I.-H.: Ionic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties. Mater. Chem. Phys. 231, 1–8 (2019)

    Article  CAS  Google Scholar 

  22. 22.

    Li, P., Wang, B., Qin, C., Han, C., Sun, L., Wang, Y.: Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceram. Int. 46, 19232–19240 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    Xuan, Y., Hu, J., Xu, K., Hou, X., Lv, Y.: Development of sensitive carbon disulfide sensor by using its cataluminescence on nanosized-CeO2. Sensors Actuators B Chem. 136, 218–223 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    Cui, J., Pan, G., Yang, X., Zhu, M., Huang, C., Qi, J.: Enhanced acetone sensing performance of CeO2-ZnO at low temperature and its photo-excitation effect. Mater. Sci. Semicond. Process. 118, 105221 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    Seong, G., Dejhosseini, M., Adschiri, T.: A kinetic study of catalytic hydrothermal reactions of acetaldehyde with cubic CeO2 nanoparticles. Appl. Catal. A Gen. 550, 284–296 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Yu, X., Wu, X., Chen, Z., Huang, Z., Jing, G.: Oxygen vacancy defect engineering in Mn-doped CeO2 nanostructures for nitrogen oxides emission abatement. Mol. Catal. 476, 110512 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., Vodyankina, O.V.: The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B. 260, 118148 (2020)

    CAS  Article  Google Scholar 

  28. 28.

    Feng, Z., Ren, Q., Peng, R., Mo, S., Zhang, M., Fu, M., Chen, L., Ye, D.: Effect of CeO2 morphologies on toluene catalytic combustion. Catal. Today. 332, 177–182 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    Hancock, M.L., Yokel, R.A., Beck, M.J., Calahan, J.L., Jarrells, T.W., Munson, E.J., Olaniyan, G.A., Grulke, E.A.: The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis. Appl. Surf. Sci. 535, 147681 (2021)

    CAS  Article  Google Scholar 

  30. 30.

    Ramachandran, M., Subadevi, R., Sivakumar, M.: Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum. 161, 220–224 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    Celik, E., Ozgul, M., Avci, E., Hascicek, Y.S.: Adhesion properties of CeO2 films produced from different precursors using sol-gel process. Mater. Sci. Eng. B. 261, 114774 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    Totong, S., Daorattanachai, P., Laosiripojana, N., Idem, R.: Catalytic depolymerization of alkaline lignin to value-added phenolic-based compounds over Ni/CeO2-ZrO2 catalyst synthesized with a one-step chemical reduction of Ni species using NaBH4 as the reducing agent. Fuel Process. Technol. 198, 106248 (2020)

    CAS  Article  Google Scholar 

  33. 33.

    Rohini, B.S., Nagabhushana, H., Darshan, G.P., Basavaraj, R.B., Sharma, S.C., Amudha, P., Rahul, M., Prasad, B.D.: Multifunctional applications of self - assembled 3D CeO2: Cr3+ hierarchical structures synthesized via ultrasound assisted sonochemical route. J. Alloys Compd. 724, 897–909 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Habib, I.Y., Burhan, J., Jaladi, F., Lim, C.M., Usman, A., Kumara, N.T.R.N., Tsang, S.C.E., Mahadi, A.H.: Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catal. Today. (2020). https://doi.org/10.1016/j.cattod.2020.04.008

  35. 35.

    Sundari, S.S., Sugan, S., Pabitha, G.: Induced ferromagnetism in Fe doped CeO2 nanoparticles. Mater. Today Proc. 5, 16633–16639 (2018)

    Article  CAS  Google Scholar 

  36. 36.

    Balamurugan, A., Sudha, M., Surendhiran, S., Anandarasu, R., Ravikumar, S., Khadar, Y.A.S.: Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: characterization and antibacterial activity. Mater. Today-Proc. 26, 3588–3594 (2020)

    CAS  Article  Google Scholar 

  37. 37.

    Rao, R., Shao, F., Dong, X., Dong, H., Fang, S., Sun, H., Ling, Q.: Effect of Ag-CeO2 interface formation during one-spot synthesis of Ag-CeO2 composites to improve their catalytic performance for CO oxidation. Appl. Surf. Sci. 513, 145771 (2020)

    CAS  Article  Google Scholar 

  38. 38.

    Mittal, M., Gupta, A., Pandey, O.P.: Role of oxygen vacancies in Ag/Au doped CeO2 nanoparticles for fast photocatalysis. Sol. Energy. 165, 206–216 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    Haghighatzadeh, A.: Enhanced third-order optical susceptibility in Ag-doped CeO2 nanostructures under pulsed Nd-YVO4 laser☆. Opt. Laser Technol. 126, 106114 (2020)

    CAS  Article  Google Scholar 

  40. 40.

    Elango, M., Deepa, M., Subramanian, R., Saraswathy, G.: Investigation of structural, morphological and antimicrobial properties of polyindole/Ag doped CeO2 nanocomposites. Mater. Today Proc. 26, 3544–3551 (2020)

    CAS  Article  Google Scholar 

  41. 41.

    de Lima, A.F.F., Zonetti, P.C., Rodrigues, C.P., Appel, L.G.: The first step of the propylene generation from renewable raw material: acetone from ethanol employing CeO2 doped by Ag. Catal. Today. 279, 252–259 (2017)

    Article  CAS  Google Scholar 

  42. 42.

    Ma, R., Zhang, S., Wen, T., Gu, P., Li, L., Zhao, G., Niu, F., Huang, Q., Tang, Z., Wang, X.: A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today. 335, 20–30 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    Aboukaïs, A., Skaf, M., Hany, S., Cousin, R., Aouad, S., Labaki, M., Abi-Aad, E.: A comparative study of Cu, Ag and Au doped CeO2 in the total oxidation of volatile organic compounds (VOCs). Mater. Chem. Phys. 177, 570–576 (2016)

    Article  CAS  Google Scholar 

  44. 44.

    Cullity, B.D.: Elements of X-Ray Diffraction, 2nd edn. Addison–Wesley Publishing Company, Massachusetts (1978)

    Google Scholar 

  45. 45.

    Kaygili, O.: Synthesis and characterization of Na2O–CaO–SiO2 glass–ceramic. J. Therm. Anal. Calorim. 117, 223–227 (2014)

    CAS  Article  Google Scholar 

  46. 46.

    Nithya, P., Sundrarajan, M.: Ionic liquid functionalized biogenic synthesis of AgeAu bimetal doped CeO2 nanoparticles from Justicia adhatoda for pharmaceutical applications: antibacterial and anti-cancer activities. J. Photochem. Photobiol. B. 202, 111706 (2020)

    CAS  Article  Google Scholar 

  47. 47.

    Magdalane, C.M., Kaviyarasu, K., Vijaya, J.J., Siddhardha, B., Jeyaraj, B.: Photocatalytic activity of binarymetal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B. 163, 77–86 (2016)

    CAS  Article  Google Scholar 

  48. 48.

    Murugadoss, G., Ma, J., Ning, X., Kumar, M.R.: Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorg. Chem. Commun. 109, 107577 (2019)

    CAS  Article  Google Scholar 

  49. 49.

    Umehara, T., Hagiwara, M., Fujihara, S.: Synthesis of hollow and aggregated CeO2:Sm3+ microspheres and their redox-responsive luminescence. J. Alloys Compd. 787, 1074–1081 (2019)

    CAS  Article  Google Scholar 

  50. 50.

    Darroudi, M., Hoseini, S.J., Oskuee, R.K., Hosseini, H.A., Gholami, L., Gerayli, S.: Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Int. 40, 7425–7430 (2014)

    CAS  Article  Google Scholar 

  51. 51.

    Yan, B., Zhu, H.: Controlled synthesis of CeO2 nanoparticles using novel amphiphilic cerium complex precursors. J. Nanopart. Res. 10, 1279–1285 (2008)

    CAS  Article  Google Scholar 

  52. 52.

    Valášková, M., Hundáková, M., Smetana, B., Drozdová, L., Klemm, V., Rafaja, D.: Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin. Appl. Clay Sci. 179, 105150 (2019)

    Article  CAS  Google Scholar 

  53. 53.

    Khan, M.A.M., Siwach, R., Kumar, S., Ahamed, M., Ahmed, J.: Frequency and temperature dependence of dielectric permittivity/electric modulus, and efficient photocatalytic action of Fe-doped CeO2 NPs. J. Alloys Compd. 856, 158127 (2021)

    Article  CAS  Google Scholar 

  54. 54.

    Jampaiah, D., Ippolito, S.J., Sabri, Y.M., Tardio, J., Selvakannan, P.R., Nafady, A., Reddy, B.M., Bhargava, S.K.: Ceria–zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 6, 1792–1803 (2016)

    CAS  Article  Google Scholar 

  55. 55.

    Ma, Z., Wu, X., Si, Z., Weng, D., Ma, J., Xu, T.: Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2–ZrO2 NH3–SCR catalysts. Appl. Catal. B. 179, 380–394 (2015)

    CAS  Article  Google Scholar 

  56. 56.

    Tsai, D.-S., Yang, T.-S., Huang, Y.-S., Peng, P.-W., Ou, K.-L.: Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size. Int. J. Nanomedicine. 11, 2531–2542 (2016)

    CAS  Article  Google Scholar 

  57. 57.

    Suzuki, K., Kato, M., Sunaoshi, T., Uno, H., Carvajal-Nunez, U., Nelson, A.T., McClellan, K.J.: Thermal and mechanical properties of CeO2. J. Am. Ceram. Soc. 102, 1994–2008 (2019)

    CAS  Google Scholar 

  58. 58.

    Azmi, A.A., Ngadi, N., Kamaruddin, M.J., Zakaria, Z.Y., Teh, L.P., Rozali Annuar, N.H., Setiabudi, H.D., Jalil, A.A., Ab Aziz, M.A.: Rapid one pot synthesis of mesoporous ceria nanoparticles by sol-gel method for enhanced carbon dioxide capture. Chem. Eng. Trans. 72, 403–408 (2019)

    Google Scholar 

  59. 59.

    Ravishankar, T.N., Ramakrishnappa, T., Nagaraju, G., Rajanaika, H.: Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. Chemistryopen. 4, 146–154 (2015)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tankut Ates.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ates, T. Synthesis and characterization of Ag-doped CeO2 powders. J Aust Ceram Soc (2021). https://doi.org/10.1007/s41779-021-00565-6

Download citation

Keywords

  • CeO2
  • Ag doping
  • X-ray diffraction (XRD)