Effects of strontia on calcium zirconate sintering and thermal shock resistance


The effects of strontian (SrO) content on the phase composition, microstructure, thermal shock resistance, and sintering properties of CaZrO3 were evaluated. CaZrO3 with different SrO contents (0, 1, 2, 4 wt.%) was synthesized by solid-state reaction. Zirconium oxide (ZrO2) and calcium carbonate (CaCO3) were used as raw materials, and SrO was added in varying contents. The SrO content played a key role in densification and grain refinement during the sintering process. Ceramic with relative density up to 90.82% and greatest flexural strength (252.82 MPa) was obtained by adding 4 wt.% strontia. Additionally, the SrO content affected the microstructures of the samples after sintering and quenching with liquid nitrogen. Furthermore, a significant effect on the densification process and the crack propagation mode transition was also observed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Nadler, M.R., Fitzsimmons, E.S.: Preparation and properties of calcium zirconate. J. Am. Ceram. Soc. 38, 214–217 (1955)

    CAS  Article  Google Scholar 

  2. 2.

    Booth, F., Garrido, L., Aglietti, E., Silva, A., Pena, P., Baudin, C.: CaZrO3-MgO structural ceramics obtained by reaction sintering of dolomite-zirconia mixtures. J. Eur. Ceram. Soc. 36, 2611–2626 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    Galuskin, E.V., Gazeev, V.M., Armeruster, T., Zadov, A.E., Galuskina, I.O., Pertsev, N.N., et al.: Lakargiite CaZrO3: a new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria. Russia Am. Mineral. 93, 1903–1910 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    Schafföner, S., Aneziris, C.G., Berek, H., et al.: Fused calcium zirconate for refractory applications. J. Eur. Ceram. Soc. 33, 3411–3418 (2013)

    Article  Google Scholar 

  5. 5.

    Li, M.L., Gehre, P., Aneziris, C.G.: Investigation of calcium zirconate ceramic synthesized by slip casting and calcination. J. Eur. Ceram. Soc. 33, 2007–2012 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Szczerba, J., Pedzich, Z.: The effect of natural dolomite admixtures on calcium zirconate-periclase materials microstructure evolution. Ceram. Int. 36, 535–547 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    Kozuka, H., Kaita, Y., Tuchiya, Y., Honda, T., Ohta, S.: New kind of chrome-free (MgO-CaO-ZrO2) bricks for burning zone of rotary cement kiln. UNITECR’93, 1027–1037 (1993)

  8. 8.

    Pollet, M., Marinel, S.: Lowing of CaZrO3 sintering temperature of using lithium-calcium fluoride flux addition. Mat. Sci. Eng. A Struct. 362, 167–173 (2003)

    Article  Google Scholar 

  9. 9.

    Lee, W.J., Wakahara, A., Kim, B.-H.: Decreasing of CaZrO3 sintering temperature with glass frit addition. Ceram. Int. 31, 521–524 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    Yajima, T., Kazeoka, H., Yogo, T., Iwahara, H.: Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics. 47, 271–275 (1991)

    CAS  Article  Google Scholar 

  11. 11.

    Liu, H., Wang, R.L., Gu, J.N., Ji, Y.Y., Bu, J.L.: Effects of MgO content on sintering characteristics, composition and microstructure of CaZrO3-MgO ceramics. J. Synth. Cryst. 45, 470–475 (2016)

    Google Scholar 

  12. 12.

    Lang, J.F., You, J.G., Zhang, X.F., Luo, X.D., Zheng, S.Y.: Effect of MgO on thermal shock resistance of CaZrO3 ceramic. Ceram. Int. 44, 22176–22180 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    CAS  Article  Google Scholar 

  14. 14.

    Li, S., Xie, Z.P.: Preparation of zirconia ceramics with high density and fine grains by oscillatory pressure sintering. J. Inorg. Mater. 31, 207–212 (2016)

    Article  Google Scholar 

  15. 15.

    Li, S., Xie, Z.P., Xue, W.J.: Microstructure and mechanical properties of zirconia ceramics consolidated by a novel oscillatory pressure sintering. Ceram. Int. 41, 10281–10286 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Lin, W.Y., Hon, M.H., Yang, S.J.: Grain growth enhancement of bend strength on hot-pressing optical MgF2. J. Mater. Sci. Lett. 6, 589–590 (1987)

    CAS  Article  Google Scholar 

  17. 17.

    Rahaman, M.N.: Ceramic Processing and Sintering, 2nd edn. Marcel Dekker, New York (2003)

    Google Scholar 

  18. 18.

    Xue, W.J., Yi, J., Xie, Z.P., et al.: Enhanced fracture toughness of silicon nitride ceramics at cryogenic temperatures. Scr. Mater. 66, 891–894 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    Zhao, X.J., Ru, H.Q., Chen, D.L., Zhang, N., Liang, B.: Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites. Mat. Sci. Eng. B Adv. 177, 402–410 (2012)

    CAS  Article  Google Scholar 

Download references


The authors received financial support from Key Foundation Project of Liaoning Education Department (2017LNZD06) and Scientific Research Fund of Liaoning Provincial Education Department (USTLGCZX201808).

Author information




All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Chaowei Si and Jiegang You. The first draft of the manuscript was written by Chaowei Si and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiegang You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Si, C., Lang, J., You, J. et al. Effects of strontia on calcium zirconate sintering and thermal shock resistance. J Aust Ceram Soc (2020). https://doi.org/10.1007/s41779-020-00490-0

Download citation


  • CaZrO3
  • SrO
  • Solid solution
  • Thermal shock behavior
  • Crack propagation