Effect of niobium pentoxide (Nb2O5) on the microstructure and properties of the diopside glass-ceramics produced from Bayan Obo mine tailing


Diopside (CaMgSi2O6) glass-ceramic, a typical derivative of the pyroxene system, has attracted considerable attentions in the fields of anti-erosion, anti-abrasion, light-emitting diode (LED) packaging, or electric circuit substrate materials because of its high mechanical strength, good physical and chemical stability, as well as remarkable low dielectric coefficient and loss. However, the effect of niobium pentoxide (Nb2O5) on the microstructure and property of this technically important glass-ceramic is still not fully understood. Therefore, diopside glass-ceramics with 0 wt%, 0.1 wt%, 0.025 wt%, 0.5 wt%, 1 wt%, 2 wt%, and 4 wt% of Nb2O5 were synthesized respectively by the traditional melting method using Bayan Obo mine tailing and fly ash as the main starting materials. The obtained materials were studied by differential scanning calorimetry, X-ray diffractometry, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, mechanical property, and dielectric property measurements to reveal the effect of Nb2O5 on its microstructure and property. The result shows the addition of Nb2O5 has a clear effect on increasing the formation of diopside crystals and the crystallization of calcium niobate (Ca2Nb2O7) secondary phase at the intergranular areas between diopside crystals. And this latter microstructural change relates closely with the decrease in the average size of diopside crystals and their morphology changing from the ones resembling chrysanthemum flowers to clusters of roughly round islands. Addition of Nb2O5 up to 2 wt% exhibits a near monotonous effect on improving the bending strength. The maximum value of it can reach as high as 236 MPa. The dielectric constant rises from 7 to 9.7 with the increase of Nb2O5 addition from 0 to 4 wt%, while the dielectric loss fluctuates within the range of 0.015 to 0.035. The comparison of the results of this study with those of peers showed the crystallization of diopside crystals was more likely enhanced through the mechanism related to the Nb2O5-induced phase separation in the base glass rather than the normally reported heterogeneous nuclei mechanism reported for Ferric oxide (Fe2O3), chromium trioxide (Cr2O3), and titania (TiO2).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Holand W., Beall G.H., Glass ceramic technology (Second Edition ed.), John Wiley & Sons,2012

  2. 2.

    Ouyang, S., Zhang, Y., Chen, Y., Zhao, Z., Wen, M., Li, B., Shi, Y., Zhang, M., Liu, S.: Preparation of glass-ceramics using chromium-containing stainless steel slag: crystal structure and solidification of heavy metal chromium. Sci Rep-UK. 9, 1–9 (2019)

    Article  Google Scholar 

  3. 3.

    Gao, H.T., Liu, X.H., Chen, J.Q., Qi, J.L., Wang, Y.B., Ai, Z.R.: Preparation of glass-ceramics with low density and high strength using blast furnace slag, glass fiber and water glass. Ceram Int. 44, 6044–6053 (2018). https://doi.org/10.1016/j.ceramint.2017.12.228

    CAS  Article  Google Scholar 

  4. 4.

    Chou, C., Chang, C., Chen, G., Liao, W., Feng, K., Tsao, C.: Control of silver diffusion in low-temperature co-fired diopside glass-ceramic microwave dielectrics. Materials. 11, 55–63 (2018)

    Article  Google Scholar 

  5. 5.

    Zitani, M.K., Ebadzadeh, T., Banijamali, S., Riahifar, R., Ruessel, C., Abkenar, S.K., Ren, H.: High quality factor microwave dielectric diopside glass-ceramics for the low temperature co-fired ceramic (LTCC) applications. J Non-Cryst Solids. 487, 65–71 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.02.025

    CAS  Article  Google Scholar 

  6. 6.

    Mysen B., Richet P., Silicate glass and melts-properties and structure, Elsevier,2010

  7. 7.

    He, D., Gao, C., Pan, J., Xu, A.: Preparation of glass-ceramics with diopside as the main crystalline phase from low and medium titanium-bearing blast furnace slag. Ceram Int. 44, 1384–1393 (2018). https://doi.org/10.1016/j.ceramint.2017.09.019

    CAS  Article  Google Scholar 

  8. 8.

    Öveçolu, M.L., Kuban, B., Özer, H.: Characterization and crystallization kinetics of a diopside-based glass-ceramic developed from glass industry raw materials. J Eur Ceram Soc. 17, 957–962 (1997)

    Article  Google Scholar 

  9. 9.

    Deng, L., Zhang, X., Li, B., Jia, X., Zhang, M., Ouyang, S.: Influence of crucible material on the microstructure and properties of iron rich glass-ceramics. Journal of Wuhan University of Technology-Mater Sci Ed. 33, 49–55 (2018). https://doi.org/10.1007/s11595-018-1784-1

    CAS  Article  Google Scholar 

  10. 10.

    Deng, L., Zhang, X., Zhang, M., Jia, X.: Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics. J Non-Cryst Solids. 500, 310–316 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.018

    CAS  Article  Google Scholar 

  11. 11.

    Chen, J., Yan, B., Li, H., Li, P., Guo, H.: Vitrification of blast furnace slag and fluorite tailings for giving diopside-fluorapatite glass-ceramics. Mater Lett. 218, 309–312 (2018). https://doi.org/10.1016/j.matlet.2018.02.020

    CAS  Article  Google Scholar 

  12. 12.

    Li, B., Deng, L., Zhang, H., Jia, X.: Structure and performance of glass-ceramics obtained by Bayan Obo tailing and fly ash. J Non-Cryst Solids. 380, 103–108 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    Voncken J.H.L., The rare earth elements-an introduction, Springer, Switzerland,2016

  14. 14.

    JR H.D.K., Russak M.A.: Formation of nepheline glass-ceramics using Nb2O5 as a nucleation catalyst. J Am Ceram Soc 382-385, (1974)

  15. 15.

    Fukumi, K., Sakka, S.: Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy. J Mater Sci. 23, 2819–2823 (1988). https://doi.org/10.1007/BF00547456

    CAS  Article  Google Scholar 

  16. 16.

    Lopes, J.H., Magalhães, A., Mazali, I.O., Bertran, C.A.: Effect of niobium oxide on the structure and properties of melt-derived bioactive glasses. J Am Ceram Soc. 97, 3843–3852 (2014). https://doi.org/10.1111/jace.13222

    CAS  Article  Google Scholar 

  17. 17.

    Nowak, N., Cardinal, T., Adamietz, F., Dussauze, M., Rodriguez, V.: Influence of niobium and titanium introduction on optical and physical properties of silicate glasses. Mater Res Bull. 48, 1376–1380 (2013). https://doi.org/10.1016/j.materresbull.2012.12.004

    CAS  Article  Google Scholar 

  18. 18.

    Santos, L.F., Wondraczek, L., Deubener, J., Almeida, R.M.: Vibrational spectroscopy study of niobium germanosilicate glasses. J Non-Cryst Solids. 353, 1875–1881 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.02.018

    CAS  Article  Google Scholar 

  19. 19.

    Pernice, P.: Crystallization of the K2O·Nb2O5·2SiO2 glass: evidences for existence of bulk nanocrystalline structure. J Non-Cryst Solids. 275, 216–224 (2000). https://doi.org/10.1016/S0022-3093(00)00258-1

    CAS  Article  Google Scholar 

  20. 20.

    Aronne, A., Sigaev, V.N., Pernice, P., Fanelli, E., Usmanova, L.Z.: Non-isothermal crystallization and nanostructuring in potassium niobium silicate glasses. J Non-Cryst Solids. 337, 121–129 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.03.120

    CAS  Article  Google Scholar 

  21. 21.

    Sarkisov P.D., Paleari A., Sigaev V.N., Lotarev S.V., Golubev N.V., Stefanovich S.Y., Champagnon B., Vouagner D., and Fargin M.C.: Structure of low-silica glasses in the K2O-Nb2O5-SiO2 system. Theor. Found. Chem. En.+. 47, 1–9 (2013), DOI: https://doi.org/10.1063/1.5081830

  22. 22.

    Denry, I.L., Holloway, J.A., Gupta, P.K.: Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics. J Biomed Mater Res B Appl Biomater. 100B, 1198–1205 (2012). https://doi.org/10.1002/jbm.b.32684

    CAS  Article  Google Scholar 

  23. 23.

    Denry, I.L., Holloway, J.A., Nakkula, R.J., Walters, J.D.: Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics. J Biomed Mater Res B Appl Biomater. 75B, 18–24 (2005). https://doi.org/10.1002/jbm.b.30295

    CAS  Article  Google Scholar 

  24. 24.

    Kansal, I., Goel, A., Tulyaganov, D.U., Ferreira, J.: Effect of some rare-earth oxides on structure, devitrification and properties of diopside based glasses. Ceram Int. 35, 3221–3227 (2009). https://doi.org/10.1016/j.ceramint.2009.05.023

    CAS  Article  Google Scholar 

  25. 25.

    Karamanov, A., Pisciella, P., Pelino, M.: The effect of Cr2O3 as a nucleating agent in iron-rich glass-ceramics. J Eur Ceram Soc. 19, 2641–2645 (1999)

    CAS  Article  Google Scholar 

  26. 26.

    Rezvani, M., Eftekhari-Yekta, B., Solati-Hashjin, M., Marghussian, V.K.: Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2-Al2O3-CaO-MgO(R2O) glass-ceramics. Ceram Int. 31, 75–80 (2005). https://doi.org/10.1016/j.ceramint.2004.03.037

    CAS  Article  Google Scholar 

  27. 27.

    Prencipe M., Mantovani L., Tribaudino M., Bersani D., Lottici and Pier P.: The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies. Eur. J. Mineral. 24, 457–464 (2012), DOI: https://doi.org/10.1371/journal.pone.0226043

  28. 28.

    Aronne A., Sigaev V.N., Champagnon B., Fanelli E., and Valeria Califano C L.Z.U.B.: The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy. J. Non-Cryst. Solids. 351, 3610–3618 (2005), DOI: https://doi.org/10.1111/nph.16084

  29. 29.

    Volf, M.B.: Chemical approach to glass. Elsevier, Amsterdam-Oxford-New York-Tokyo (1984)

    Google Scholar 

  30. 30.

    Marghussian, V.K., Balazadegan, O., Eftekhari-yekta, B.: Crystallization behaviour, microstructure and mechanical properties of cordierite–mullite glass ceramics. J Alloy Compd. 484, 902–906 (2009)

    CAS  Article  Google Scholar 

  31. 31.

    Frederikse H.P.R. (1985) Permittivity (dielectric constant) of inorganic solids., CRC Handbook of Chemistry & Physics. CRC Press, pp. 44-46

  32. 32.

    Shannon R.D., Dickinson J.E., Rossman G.R.: Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Phys Chem Miner 19, 148–156 (1992)

  33. 33.

    Goel, A., Tulyaganov, D.U., Kharton, V.V., Yaremchenko, A.A., Ferreira, J.M.F.: The effect of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass-ceramics. Acta Mater. 56, 3065–3076 (2008). https://doi.org/10.1016/j.actamat.2008.02.036

    CAS  Article  Google Scholar 

  34. 34.

    Shi, Y., Li, B.W., Zhao, M., Zhang, M.X.: Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent. J Am Ceram Soc. 101, 3968–3978 (2018). https://doi.org/10.1111/jace.15700

    CAS  Article  Google Scholar 

  35. 35.

    Park, J., Ozturk, A.: Effect of TiO2 addition on the crystallization and tribological properties of MgO-CaO-SiO2-P2O5-F glasses. Thermochim Acta. 470, 60–66 (2008). https://doi.org/10.1016/j.tca.2008.01.018

    CAS  Article  Google Scholar 

  36. 36.

    Li, B., Du, Y., Zhang, H., Jia, X., Zhao, M., Chen, H.: Effects of Iron oxide on the crystallization kinetics of Baiyunebo tailing glass-ceramics. T Indian Ceram Soc. 72, 119–123 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    Karamanov, A., Pisciella, P., Pelino, M.: The effect of Cr2O3 as a nucleating agent in iron-rich glass-ceramics. J Eur Ceram Soc. 19, 2641–2645 (1999)

    CAS  Article  Google Scholar 

  38. 38.

    Li, B., Du, Y., Zhang, X., Zhao, M., Chen, H.: Crystallization characteristics and properties of high-performance glass-ceramics derived from Baiyunebo east mine tailing. Environ Prog Sustain. 34, 420–426 (2015)

    Article  Google Scholar 

  39. 39.

    Doremus R.H., Glass Science (2nd Edition ed.), John wiley & Sons Inc., 605 Third Avenue, New York,1994

  40. 40.

    Doremus, R.H.: Structure of inorganic glasses. Annu Rev Mar Sci. 2, 93–120 (1972)

    CAS  Article  Google Scholar 

  41. 41.

    Mernagh T.P., Hoatson D.M.: Raman spectroscopic study of pyroxene structures from the Munni Munni layered intrusion, Western Australia. J Raman Spectrosc 28, 647–658 (1997)

  42. 42.

    Huanxin, G., Zhongcai, W., Shizhuo, W.: Properties and structure of niobosilicate glasses. J Non-Cryst Solids. 112, 332–335 (1989). https://doi.org/10.1016/0022-3093(89)90548-6

    Article  Google Scholar 

  43. 43.

    Choi, B.K., Sun, G.N., Kim, E.S.: Microwave dielectric properties of diopside glass-ceramics. Ceram Int. 39, S677–S680 (2013). https://doi.org/10.1016/j.ceramint.2012.10.160

    CAS  Article  Google Scholar 

Download references


This study is funded by the projects (0901051701 and 0406091701) supported by “Inner Mongolia Science & Technology Plan”. Sponsorship from the “Inner Mongolia Autonomous Region Science and Technology Major project: Fundamental and key technology research for the integrated exploitation of Bayan Obo Mine with high added value” and “Inner Mongolia autonomous region scientific innovation team of integrated exploitation of Bayan Obo mine multi-metal resource” are also fully acknowledged by all authors of current study. This study is also supported by “The IMUST Innovation Fund (No. 2017QDL-S03).

Author information



Corresponding author

Correspondence to Ming Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Gao, J., Shi, Y. et al. Effect of niobium pentoxide (Nb2O5) on the microstructure and properties of the diopside glass-ceramics produced from Bayan Obo mine tailing. J Aust Ceram Soc 56, 1079–1087 (2020). https://doi.org/10.1007/s41779-020-00454-4

Download citation


  • Nb2O5
  • Diopside
  • Glass-ceramics
  • Microstructure