Synthesis and characterization of alumina-nickel nanocomposite through sol-gel route by in situ reduction

Abstract

Brittle matrix is usually toughened by metallic phases to enhance the fracture toughness. In the present study of alumina nickel, composite with 15 wt% of nickel was prepared by sol-gel route by using Al(C3H7O)3, NiCl2.6H2O, and dextrose as precursor. The precursor gel composite was reduced by the novel in situ reduction to obtain metallic nickel dispersed in the alumina matrix. Prior to this reduction of NiCl2.6H2O, a novel technique of repeated evacuation and purging of the gel was carried out with N2 in order to replace the air present in the pores of gel, and secondly the in situ reduction was carried out in a charcoal boat in a N2 atmosphere to generate sufficient reducing atmosphere to prevent reoxidation of metallic Ni. The alumina-nickel nanocomposites were thoroughly investigated by different characterization techniques like X-ray diffraction, Dynamic light scattering, etc. Interestingly, the synthesis of a finer grained alumina-Ni composite was obtained when it was reduced at higher temperature, unlike expected and this phenomenon was explained in the text.

This is a preview of subscription content, access via your institution.

Flow chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Tuan, W.H., Brook, R.J.: The toughening of alumina with nickel inclusions. J. Eur. Ceram. Soc. 6, 31–37 (1990)

    CAS  Article  Google Scholar 

  2. 2.

    Tuan, W.H., Lin, M.C., Wu, H.H.: Preparation of Al2O3- Ni composites by pressureless sintering in H2. Ceram. Int. 21, 221–225 (1995)

    CAS  Article  Google Scholar 

  3. 3.

    Sánchez-Herencia, A.J., Hernández, N., Moreno, R.: Fracture behaviour of Pressureless sintered nickel-reinforced alumina composites. Key Eng. Mater. 290, 324–327 (2005)

    Article  Google Scholar 

  4. 4.

    Travitzky, N.A.: Microstructure and mechanical properties of alumina/copper composites fabricated by different infiltration techniques. Mater. Lett. 36, 114–117 (1998)

    CAS  Article  Google Scholar 

  5. 5.

    Dash, K., Chaira, D., Ray, B.C.: Synthesis and characterization of aluminium-alumina micro- and nano-composites by spark plasma sintering. Mater. Res. Bull. 48, 2535–2542 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Díaz, L.A., Valdés, A.F., Díaz, C., Espino, A.M., Torrecillas, R.: Alumina/molybdenum nanocomposites obtained in organic media. J. Eur. Ceram. Soc. 23, 2829–2834 (2003)

    Article  Google Scholar 

  7. 7.

    Guichard, J.L., Tillement, O., Mocellin, A.: Preparation and characterization of alumina-iron cermets by hot-pressing of nanocomposite powders. J. Mater. Sci. 32, 4513–4521 (1997)

    CAS  Article  Google Scholar 

  8. 8.

    Dutta, A.K., Chattopadhyaya, A.B., Ray, K.K.: Progressive flank wear and machining performance of silver toughened alumina cutting tool inserts. Wear. 261, 885–895 (2006)

    CAS  Article  Google Scholar 

  9. 9.

    Shi, X., Pan, Y., Guo, J.: Fabrication and magnetic properties of cobalt-dispersed-alumina composites. Ceram. Int. 33, 1509–1513 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    Seleman, M., El-S, M.: Effects of nickel distribution on the strengthening and toughening of alumina ceramics. J. Mater. Sci. Technol. 24, 723–728 (2008)

    Google Scholar 

  11. 11.

    Yao, X., Huang, Z., Chen, L., Jiang, D., Tan, S., Michel, D., Wang, G., Mazerolles, L., LiousPastol, J.: Alumina–nickel composites densified by spark plasma sintering. Mater. Lett. 59, 2314–2318 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    Tuan, W.H., Brook, R.J.: Processing of alumina/nickel composites. J. Eur. Ceram. Soc. 10, 95–100 (1992)

    CAS  Article  Google Scholar 

  13. 13.

    Sun, X., Yeomans, J.A.: Microstructure and fracture toughness of nickel particle toughened alumina matrix composites. J. Mater. Sci. 31, 875–880 (1996)

    CAS  Article  Google Scholar 

  14. 14.

    Fahrenholtz, W.G., Ellerby, D.T., Loehman, R.E.: Al2O3–Ni Composites with High Strength and Fracture Toughness. J. Am. Ceram. Soc. 83, 1279–1280 (2000)

    CAS  Article  Google Scholar 

  15. 15.

    Jones, S.A., Burlitch, J.M., Üstündag, E., Yoo, J., Zehnder, A.T.: Nickel-alumina composites: in situ synthesis by a displacement reaction, and mechanical properties. Mater. Res. Soc. Symp. Proc. 365, 53–58 (1994)

    Article  Google Scholar 

  16. 16.

    Rodeghiero, E.D., Tse, O.K., Chisaki, J., Giannelis, E.P.: Synthesis and properties of Ni-α-Al2O3 composites via sol-gel. Mater. Sci. Eng. A. 195, 151–161 (1995)

    Article  Google Scholar 

  17. 17.

    Breval, E., Dodds, G., Pantano, C.G.: Properties and microstructure of Ni-alumina composite materials prepared by the sol/gel method. Mater. Res. Bull. 20, 1191–1205 (1985)

    CAS  Article  Google Scholar 

  18. 18.

    Breval, E., Deng, Z., Chiou, S., Pantano, C.G.: Sol-gel prepared Ni-Alumina composite materials. J. Mater. Sci. 27, 1464–1468 (1992)

    CAS  Article  Google Scholar 

  19. 19.

    Kafkaslıoğlu, B., Tür, Y.K.: Pressureless sintering of Al2O3/Ni nanocomposites produced by heterogeneous precipitation method with varying nickel contents. Int. J. Refract. Met. Hard Mater. 57, 139–144 (2016)

    Article  Google Scholar 

  20. 20.

    Yoldas, B.E.: Alumina gels that form porous transparent Al2O3. J. Mater. Sci. 10, 1856–1860 (1975)

    CAS  Article  Google Scholar 

  21. 21.

    Warrier, K.G.K.: Sol-gel concept as applied to alumina ceramics. Trans. Indian Ceram. Soc. 54, 144 (1995)

    CAS  Article  Google Scholar 

  22. 22.

    Laird, G.L.: Ward, anhydrous nickel (II) halides and their Tetrakis(ethanol) and 1,2-Dimethoxyethane complexes inorganic syntheses. Inorg. Synth. 13, 154–164 (1972)

    Google Scholar 

  23. 23.

    Bhattacharyya, A., Chakraborti, P.C., Mukherjee, S., Mitra, M.K., Das, G.C.: Preparation of alumina-silica-nickel nanocomposite by in situ reduction through sol-gel route. Sci. Technol. Adv. Mater. 2, 449–454 (2001)

    CAS  Article  Google Scholar 

  24. 24.

    Wells, A.F.: Structural Inorganic Chemistry, 5th Edition. Oxford University Press, Oxford (1984)

  25. 25.

    Gaskell, D.R.: Introduction to the Thermodynamics of Materials. Talor and Francis, U.SA (1798)

    Google Scholar 

  26. 26.

    Houminer, Y., Patai, S.: Pyrolytic reactions of carbohydrates. Part II Thermal Decomposition of D-glucose. Isr. J. Chem. 7, 513–524 (1969)

    CAS  Article  Google Scholar 

  27. 27.

    Perry, R.H., Green, D.W., Maloney, J.O.: Perrys’ Chemical Engineers’ Handbook. McGraw-Hill, New York (1997)

Download references

Acknowledgements

The authors acknowledge the support of “Indian Association for the Cultivation of Science” to help us to conduct DLS and HRTEM study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Guha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guha, S., Ghosh, S.K., Chaudhuri, M.G. et al. Synthesis and characterization of alumina-nickel nanocomposite through sol-gel route by in situ reduction. J Aust Ceram Soc 56, 1089–1096 (2020). https://doi.org/10.1007/s41779-020-00453-5

Download citation

Keywords

  • Nanocomposite
  • Sol-gel chemistry
  • In situ
  • Reduction