Thermodynamic study of zirconium carbide synthesis via a low-temperature pyrovacuum method


In this research, the thermodynamic aspect of the nano-sized zirconium carbide production is investigated via a facile, low-temperature and cost-effective carbothermal method under vacuum and argon atmospheres. The starting materials were zirconium acetate and sucrose as zirconium and carbon precursors, respectively. The gels were prepared based on 3, 4, 5, and 7 molar ratios of carbon to zirconium and heated at 1200 and 1400 °C under vacuum and argon atmospheres. The formation of zirconium carbides under different atmospheres were studied via thermogravimetric analysis and the results were compared. The phase composition and microstructural features were investigated using X-ray diffraction and scanning electron microscopy, respectively. According to the thermogravimetric results and performed thermodynamic calculations, it was revealed that the ZrC formation starts at 1200 °C under vacuum. It is also demonstrated that the formation of nano ZrC powder with crystallite sizes smaller than 30 nm, completely occurs after processing at 1400 °C in vacuum. The measured lattice parameter value of the optimized sample was equal to 4.7003 Å.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Ushakov, S.V., Navrotsky, A., Hong, Q., Walle, A.: Carbides and nitrides of zirconium and hafnium. Materials. 12, 2728 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    Arianpour, F., Golestanifard, F., Rezaie, H.R., Mazaheri, M., Celik, A., Kara, F., Fantozzi, G.: Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC-HfC based UHTCs consolidated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 56, 1–7 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    Zhou, Y., Heitmann, T.W., Fahrenholtz, W.G., Hilmas, G.E.: Synthesis of ZrCx with controlled carbon stoichiometry by low temperature solid state reaction. J. Eur. Ceram. Soc. 39, 2594–2600 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Kim, J.H., Seo, M.: Influence of lattice strain on grain growth behavior of zirconium carbide. Ceram. Int. 44, 17204–17208 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    Giorgi, E., Grasso, S., Zapata-Solvas, E., Lee, W.E.: Reactive carbothermal reduction of ZrC and ZrOC using spark plasma sintering. Adv. Appl. Ceram. S1, S34–S47 (2018)

    Article  Google Scholar 

  6. 6.

    Yu, L., Feng, L., Lee, H.I., Silvestroni, L., Sciti, D., Woo, Y.J., Lee, S.H.: Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio. Int. J. Refract. Met. Hard Mater. 81, 149–154 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, M.X., Hu, Q.D., Huang, B., Li, J.Z., Li, J.G.: Study of formation behavior of ZrC in the Fe-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 29, 596–600 (2011)

    Article  Google Scholar 

  8. 8.

    Zhang, M.X., Huanga, B., Hua, Q.D., Lia, J.G.: Study of formation behavior of ZrC in the Cu-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 31, 230–235 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    Li, J., Fu, Z.Y., Wang, W.M., Wang, H., Lee, S.H., Niihara, K.: Preparation of ZrC by self-propagating high-temperature synthesis. Ceram. Int. 36, 1681–1686 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    Hu, Q., Zhang, M., Luo, P., Song, M., Li, J.: Thermal explosion synthesis of ZrC particles and their mechanism of formation from Al-Zr-C elemental powders. Int. J. Refract. Met. Hard Mater. 35, 251–256 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    Nam, Y.S., Cui, X.M., Jeong, L., Lee, J.Y., Park, W.H.: Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films. 517, 6531–6538 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    Combemale, L., Leconte, Y., Portier, X., Herlin-Boime, N., Reynaud, C.: Synthesis of nanosized zirconium carbide by laser pyrolysis route. J. Alloy Compound. 483, 468–472 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    Dolle, M., Gosset, D., Bogicevic, C., Karolak, F., Simeone, D., Baldinozzi, G.: Synthesis of nanosized zirconium carbide by a sol-gel route. J. Eur. Ceram. Soc. 27, 2061–2067 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    Zheng, Y., Zheng, Y., Wang, R., Wei, K.: Direct determination of carbothermal reduction temperature for preparing silicon carbide from the vacuum furnace thermobarogram. Vacuum. 82, 336–339 (2008)

    Article  Google Scholar 

  15. 15.

    Wu, K., Zhang, G., Gou, H., Chou, K.: Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite. Vacuum. 151, 51–60 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    Sen, W., Sun, H., Yang, B., Xu, B., Ma, W., Liu, D., Dai, Y.: Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Met. Hard Mater. 28, 628–632 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    Arianpour, F., Kazemi, F., Rezaie, H.R., Asjodi, A., Liu, J.: Nano zirconium carbide powder synthesis via carbothermal route. Defect Diffus Forum 334, 381–386 (2013)

    Article  Google Scholar 

  18. 18.

    Sevastyanov, V.G., Simonenko, E.P., Ignatov, N.A., Ezhov, Y.S., Simonenko, N.P., Kuznetsov, N.T.: Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russ. J. Inorg. Chem. 56, 1681–1687 (2011)

    Article  Google Scholar 

  19. 19.

    Jenkins, R., Snyder, R.: Introduction to X-ray powder diffractometery. 2nd edition. John Wiley & Sons, USA (2012)

    Google Scholar 

  20. 20.

    Saberi, A., Alinejad, B., Negahdari, Z., Kazemi, F., Almasi, A.: A novel method to low temperature synthesis of nanocrystalline forsterite. Mater. Res. Bull. 42, 666–673 (2007)

    CAS  Article  Google Scholar 

  21. 21.

    Ebrahimi-Kahrizsangi, R., Amini-Kahrizsangi, E.: Zirconia carbothermal reduction: Non-isothermal kinetics. Int. J. Refract. Met. Hard Mater. 27, 637–641 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    Berger, L.M., Gruner, W., Langholf, E., Stolle, S.: On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. Int. J. Refract. Met. Hard Mater. 17, 235–243 (1999)

    CAS  Article  Google Scholar 

  23. 23.

    David, J., Trolliard, G., Gendre, M., Maitre, A.: TEM study of the reaction mechanisms involved in the carbothermal reduction of zirconia. J. Eur. Ceram. Soc. 33, 165–179 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    Ang, C., Williams, T., Seeber, A., Wang, H., Cheng, Y.: Synthesis and evolution of zirconium carbide via sol-gel route: features of nanoparticle oxide-carbon reactions. J. Am. Ceram. Soc. 96, 1099–1106 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105–118 (1979)

    CAS  Article  Google Scholar 

  26. 26.

    Guillermet, A.F.: Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J. Alloys Compound. 217, 69–89 (1995)

    Article  Google Scholar 

  27. 27.

    Chase, M.W., Curnut, J.L., Downey, J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemical Tables. J. Phys. Chem. Ref. Data. 11, 695–940 (1982)

    CAS  Article  Google Scholar 

  28. 28.

    Gaskell, D.R., Laughlin, D.E.: Introduction to the thermodynamics of materials. 6th ed. CRC Press, New York (2017)

    Google Scholar 

  29. 29.

    Fabris, S., Paxton, A.T., Finnis, M.W.: A stabilization mechanism of zirconia based oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002)

    CAS  Article  Google Scholar 

  30. 30.

    Schönfeld, K., Martin, H.P., Michaelis, A.: Pressureless sintering of ZrC with variable stoichiometry. J Adv Ceram 6, 165–175 (2017)

    Article  Google Scholar 

  31. 31.

    Chu, A., Qin, M., Rafi-ud-din, Zhang, L., Lu, H., Jia, B., Qu, X.: Carbothermal synthesis of ZrC powders using a combustion synthesis precursor. Int. J. Refract. Met. Hard Mater. 36, 204–210 (2013)

    CAS  Article  Google Scholar 

  32. 32.

    Sacks, M.D., Wang, C., Yang, Z., Jian, A.: Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J. Mater. Sci. 39, 6057–6066 (2004)

    CAS  Article  Google Scholar 

  33. 33.

    Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent Mater 4, 289–298 (2008)

    Article  Google Scholar 

  34. 34.

    Gendre, M., Maitre, A., Trolliard, G.: Synthesis of zirconium oxycarbide (ZrCxOy) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J. Eur. Ceram. Soc. 31, 2377–2385 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    Feng, L., Lee, S., Lee, H.: Nano-sized zirconium carbide powder: synthesis and densification using a spark plasma sintering apparatus. Int. J. Refract. Met. Hard Mater. 64, 98–105 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    Rejasse, F., Rapaud, O., Trolliard, G., Masson, O., Maitre, A.: Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system. RSC Adv. 106, 1–30 (2016)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hamid Reza Rezaie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arianpour, F., Kazemi, F. & Rezaie, H.R. Thermodynamic study of zirconium carbide synthesis via a low-temperature pyrovacuum method. J Aust Ceram Soc 56, 969–977 (2020).

Download citation


  • Zirconium carbide
  • Carbothermal reduction
  • Pyrovacuum
  • Thermo-gravimetry
  • X-ray diffraction