Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM)

Abstract

The effect of micromonoclinic ZrO2 addition on properties of CaO-based refractories was investigated in our work. Zero, 5 wt%, 10 wt%, and 15 wt% micromonoclinic ZrO2 powders were added into CaO-MgO (CaO-based) refractories. The obtained results indicated that with the introduction of micromonoclinic ZrO2, the density increased slightly after heated at 1600 °C for 3 h. The results indicated that the density and mechanical properties of the samples were improved after introducing micromonoclinic ZrO2. The hydration resistance of the samples was improved with appropriate proportion of ZrO2. However, excessive ZrO2 damaged the hydration resistance of the samples. The influence of monoclinic ZrO2 on the samples was mainly caused by CaZrO3, the reaction product of CaO and ZrO2. The details of the CaZrO3 effects on the samples were discussed in this paper. Besides, based on the experiment results, CaO-based crucible was prepared and used in desulfurization. The desulfurization effects were compared with desulfurizer: Al. Desulfurizer reduced the content of [O] and [S] in the alloy obviously.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Thellaputta, G.R., Chandra, P.S., Raoc, C.S.P.: Machinability of nickel based superalloys: a review. Mater. Today Proc. 4(2), 3712–3721 (2017)

    Google Scholar 

  2. 2.

    Praveen, K.V.U., Sastry, G.V.S., Singh, V.: Work-hardening behavior of the Ni-Fe based superalloy IN718. Metall. Mater. Trans. A. 39(1), 65–78 (2008)

    Google Scholar 

  3. 3.

    Maktouf, W., Ammar, K., Naceur, I.B., et al.: Multiaxial high-cycle fatigue criteria and life prediction: application to gas turbine blade. Int. J. Fatigue. 92, 25–35 (2016)

    CAS  Google Scholar 

  4. 4.

    Kwong, J.: Minor cutting edge–workpiece interactions in drilling of an advanced nickel-based superalloy. Int. J. Mach. Tools Manuf. 49(7), 645–658 (2009)

    Google Scholar 

  5. 5.

    Grosu, Y., Bondarchuk, O., Faik, A.: The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application. Sol. Energy Mater. Sol. Cells. 174, 34–41 (2018)

    CAS  Google Scholar 

  6. 6.

    Gu, K., Dogan, N., Coley, K.S.: The effect of sulfur concentration in the metal on the mass transfer of phosphorus in bloated metal droplets. Steel Research International (2018)

  7. 7.

    Jacobi. The Process Metallurgy and Material Engineering of Steel with High Purity and Cleanness. 37th International Refractories Colloquium. 1994, Aachen. Germany.

  8. 8.

    Chen B, Ma Y, Gao M, et al. Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting[J]. J. Mater. Sci. Technol., 2010, 26(10):0-903.

  9. 9.

    Lin, W., Nomura, O., Nakamura, R., Uchida, S., Morio, E.: Decarbonization behavior of graphite-containing refractories by molten steel. Taikabutsu Orerseas. 19(4), 15–24 (1999)

    Google Scholar 

  10. 10.

    Soltanieh, M., Payandeh, Y.: The relationship between oxygen chemical potential and steel cleanliness. J. Iron Steel Res. Int. 12(5), 28 (2005)

    CAS  Google Scholar 

  11. 11.

    Kijac, J., Kovac, P., Steranka, E., Masek, V., Marek, P.: Metalurgija. 43, 59–62 (2004)

    CAS  Google Scholar 

  12. 12.

    Jianping, N., Yang, K., Xiaofeng, S., Tao, J., Hengrong, G., Hu, Z.: Denitrogenation and desulphurization in vim for ni-based superalloy refining. Rare Metal Mater. Eng. 32(1), 63–66 (2003)

    Google Scholar 

  13. 13.

    Niu, J.-P., Sun, X.-F., Jin, T., Yang, K.-N., Guan, H.-R., Hu, Z.-Q.: Study on deoxidations during VIM refining Ni-base superalloy by using CaO crucible. J. Mater. Eng. 12(10), 36–38 (2002)

    Google Scholar 

  14. 14.

    Junfeng, C., Liugang, C., Yaowu, W., Nan, L., Shaowei, Z.: Corrosion and penetration behaviors of slag/steel on the corroded interfaces of Al2O3-C refractories: role of Ti3AlC2. Corros. Sci. 143, 166–176 (2018) (SCI)

    Google Scholar 

  15. 15.

    Yeprem, H.A., Türedi, E., Karagöz, S.: A quantitative-metallographic study of the sintering behaviour of dolomite. Mater. Charact. 52(4), 331–340 (2004)

    CAS  Google Scholar 

  16. 16.

    Mingxue, J., Zhaoyou, C.: Penetration of Al2O3 and CaF2 containing secondary refining slags into magnesia-dolomite refractories. Ironmak. Steelmak. 7(28), 21–25 (1993)

    Google Scholar 

  17. 17.

    H Nnkagawa. Development of MgO-CaO-Al2O3 castable for steel ladle slag line. Proc. UNITECR :203 (1997).

  18. 18.

    Xinming, R., Ma, B., et al.: Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field. J. Aust. Ceram. Soc. 1–8. https://doi.org/10.1007/s41779-019-00323-9

  19. 19.

    Maya, K., Matsuo, T.: Removal of chronium from molten steel by oxidation refining. Tetsu-to-Hagane. 77(3), 369–376 (2009)

    Google Scholar 

  20. 20.

    Kobayashi, Y., Kodama, S.: Effect of CaO on Dephosphorising Ability of Deoxidation Slag for Effective Utilisation of Phosphorus in Steel. Trans. Iron Steel. Inst. Jpn. 52(6), 960–966 (2012)

    CAS  Google Scholar 

  21. 21.

    Zhang, Q., Yaowu, W., Zhang, T., et al.: Preparation of CaO granules using the granulation method. Adv. Appl. Ceram. 6, 1–6 (2018)

    Google Scholar 

  22. 22.

    Yaowu, W., Tao, Z., Qi, Z., Bingqiang, H., Nan, L.: Improvement in hydration resistance of CaO granules by addition of Zr(OH)4 and Al(OH)3. J. Am. Ceram. Soc. 00, 1–11 (2018). https://doi.org/10.1111/jace.15952

    CAS  Article  Google Scholar 

  23. 23.

    Junfeng, C., Nan, L., Yaowu, W., et al.: Influence of carbon sources on nitriding process, microstructures and mechanical properties of Si3N4, bonded SiC refractories. J. Eur. Ceram. Soc. 37(4), 1821–1829 (2017)

    Google Scholar 

  24. 24.

    Ghasemi-Kahrizsangi, S., Barati Sedeh, M., Gheisari Dehsheikh, H., et al.: Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories. Ceram. Int. S0272884216310744 (2016)

  25. 25.

    Dehsheikh, H.G., Karamian, E., Owsalou, R.G., et al.: Improvement in performance of MgO–CaO refractory composites by addition of Iron (III) oxide nanoparticles. Ceram. Int. S0272884218314329 (2018)

  26. 26.

    Guanyao, C., Baotong, L., Zhang, H., et al.: On the modification of hydration resistance of CaO with ZrO2 additive. Int. J. Appl. Ceram. Technol. 13(6), 1173–1181 (2016)

    Google Scholar 

  27. 27.

    Meng Fanlong, Cheng Zhiwei, Chen Guangyao, et al. Hydration resistance of Y2O3 doped CaO and its application to melting titanium alloys. Charact. Miner. Metals Mater. (2016)

  28. 28.

    Yong, D., Jin, Z.: Z, Huang Peiyun. Thermodynamic calculation of the zirconia–calcia system. J. Am. Ceram. Soc. 75(11), 3040–3048 (2010)

    Google Scholar 

  29. 29.

    Schafföner, S., Aneziris, C.G., Berek, H., et al.: Fused calcium zirconate for refractory applications. J. Eur. Ceram. Soc. 33(15-16), 3411–3418 (2013)

    Google Scholar 

  30. 30.

    Kim, S.K., Kim, T.K., Kim, M.G., et al.: Investment casting of titanium alloy with CaO crucible and CaZrO3 mold. Lightweight Alloys for Aerospace Application, pp. 251–260. Wiley, Hoboken (2013)

    Google Scholar 

  31. 31.

    Ewais, E.M.M., Bayoumi, I.M.I.: Fabrication of MgO-CaZrO3, refractory composites from Egyptian dolomite as a clinker to rotary cement kiln lining. Ceram. Int. 44, 9236–9246 (2018)

    CAS  Google Scholar 

  32. 32.

    Rodaev Vyacheslav, V., Zhigachev Andrey, O., Golovin, Y.I.: Microstructure and phase composition of CaO doped zirconia nanofibers. Ceram. Int. 43(1), 1200–1204 (2017)

    Google Scholar 

  33. 33.

    Chen, M., Lu, C., Jingkun, Y.: Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc. 27, 4633–4638 (2007)

    CAS  Google Scholar 

  34. 34.

    Shahraki, A., Ghasemi-kahrizsangi, S., Nemati, A.: Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3 [J]. Mater. Chem. Phys. 198, 354–359 (2017)

    CAS  Google Scholar 

  35. 35.

    Li, Z., Zhang, S., Lee, W.E.: Improving the hydration resistance of lime-based refractory materials. Metall. Rev. 53(1), 1–20 (2013)

    CAS  Google Scholar 

  36. 36.

    Hu, B., Xu, Y., Hongda, Z.: Special refractories operative technology directory. Metallurgical Industrial Press, Beijing (2004)

    Google Scholar 

  37. 37.

    Rodríguez, J.L., Rodríguez, M.A., et al.: Reaction sintering of zircon-dolomite mixtures. J. Eur. Ceram. Soc. 21, 343–354 (2001)

    Google Scholar 

  38. 38.

    Richardson, D.W.: Modern ceramic engineering. Marcel Dekker, Properties Processing and Use in Design (1992)

    Google Scholar 

  39. 39.

    Junfeng, C., Nan, L., Hubálková, J., Aneziris, C.G.: Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source? J. Eur. Ceram. Soc. 38, 3387–3394 (2018)

    Google Scholar 

  40. 40.

    Jianping, N., Yang, K., Xiaofeng, S., Tao, J., Hengrong, G., Hu, Z.: Denitrogenation and desulphurization in VIM for Ni-base superalloy refining. Rare Metal Mater. Eng. 32(1), 63–66 (2003)

    Google Scholar 

  41. 41.

    Guo, W., Yu, S., He, Y., Shen, F.: Study on the desulfurization of hot metal with composite reagent of calcium oxide and aluminum [J]. J. North. Univ. (Nature Science). 33(12), 1737–1740 (2012)

    Google Scholar 

  42. 42.

    Liang, L.-k., Yin-chang, C., Yang, H., et al.: Metallurgy thermodynamics and kinetics [M]. Shenyang: North. Univ. Technol. Press. 201, 208–211 (1990)

    Google Scholar 

  43. 43.

    Gao, F.: Smelting metallic magnesium experimental study of vacuum metal thermal reduction technology with magnesite as raw material [D]. Northeastern University, Shen Yang (2010)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaowu Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wei, Y., Chen, J. et al. Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM). J Aust Ceram Soc 56, 885–894 (2020). https://doi.org/10.1007/s41779-019-00421-8

Download citation

Keywords

  • CaO granules
  • Monoclinic ZrO2
  • Hydration resistance
  • Thermal shock resistance
  • Desulfurization