Synthesis, characterization and investigation of catalytic properties of metal-substituted (M = Mg2+, Zn2+ and Na+) calcium hydroxyapatite

Abstract

Calcium hydroxyapatite (Ca10(PO4)6(OH)2,CHAp) has unique characteristics and can be used as artificial material for the recovering of bones and teeth, for drug delivery systems, as adsorbent and catalyst. The specific chemical, structural and morphological properties of calcium hydroxyapatite are highly sensitive to the changes in chemical composition and processing conditions. Various kinds of transition metal and other cations can be readily accommodated into the apatite framework based on their large cation exchangeability. The traces of metal ions introduced in apatite structure can affect the lattice parameters, crystallinity, dissolution kinetics and other physical properties of apatite. The aim of this study was to find more economically accessible metal-substituted calcium hydroxyapatite–based catalyst. In this paper, the sol-gel and co-precipitation synthesis methods were used for the preparation of metal-substituted (M = Mg2+, Zn2+ and Na+) calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp) samples. The synthesized powders were characterized by powder X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and gas chromatography-mass spectrometry (GC-MS). The CHAp:M samples prepared by co-precipitation method were almost single-phase at different concentrations of substituents, while the sol-gel-derived CHAp:M specimens contained additional impurity phases. Metal-containing CHAp samples were tested as catalysts in a solvent-free synthesis of 2-adamantylidene(phenyl)amine. It was demonstrated that the zinc-containing CHAp improved the yield of Schiff base.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bajpai, I., Kim, D.Y., Kyong-Jin, J., Song, I.H., Kim, S.: Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio. J. Biomed. Mater. Res. B Appl. Biomater. 105(1), 72–80 (2017)

    CAS  Article  Google Scholar 

  2. 2.

    Onuma, K., Iijima, M.: Artificial enamel induced by phase transformation of amorphous nanoparticles. Sci. Rep. 7(1), 2711 (2017). https://doi.org/10.1038/s41598-017-02949-w

    CAS  Article  Google Scholar 

  3. 3.

    Mehta, D., Mondal, P., Saharan, V.K., George, S.: Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: advantage of ultrasonication with precipitation method over conventional method. Ultrason. Sonochem. 37, 56–70 (2017). https://doi.org/10.1016/j.ultsonch.2016.12.035

    CAS  Article  Google Scholar 

  4. 4.

    Salama, A.: New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J. Colloid Interface Sci. 487, 348–353 (2017). https://doi.org/10.1016/j.jcis.2016.10.034

    CAS  Article  Google Scholar 

  5. 5.

    Scudeller, L.A., Mavropoulos, E., Tanaka, M.N., Costa, A.M., Braga, C.A.C., Lopez, E.O., Mello, A., Rossi, A.M.: Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 802–811 (2017). https://doi.org/10.1016/j.msec.2017.05.061

    CAS  Article  Google Scholar 

  6. 6.

    Prichodko, A., Enrichi, F., Stankeviciute, Z., Benedetti, A., Grigoraviciute-Puroniene, I., Kareiva, A.: Study of Eu 3+ and Tm 3+ substitution effects in sol–gel fabricated calcium hydroxyapatite. J. Sol-Gel Sci. Technol. 81(1), 261–267 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Fihri, A., Len, C., Varma, R.S., Solhy, A.: Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017). https://doi.org/10.1016/j.ccr.2017.06.009

    CAS  Article  Google Scholar 

  8. 8.

    Padayachee, D., Dasireddy, V.D., Singh, S., Friedrich, H.B., Bharuth-Ram, K., Govender, A.: An investigation of iron modified hydroxyapatites used in the activation of n-octane. Mol. Catal. 438, 256–266 (2017). https://doi.org/10.1016/j.mcat.2017.05.032

    CAS  Article  Google Scholar 

  9. 9.

    Bogdanoviciene, I., Cepenko, M., Traksmaa, R., Kareiva, A., Tõnsuaadu, K.: Formation of Ca–Zn–Na phosphate bioceramic material in thermal processing of EDTA sol–gel precursor. J. Therm. Anal. Calorim. 121(1), 107–114 (2015). https://doi.org/10.1007/s10973-015-4507-2

    CAS  Article  Google Scholar 

  10. 10.

    Trinkunaite-Felsen, J., Prichodko, A., Semasko, M., Skaudzius, R., Beganskiene, A., Kareiva, A.: Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macomabalthica (L.). Adv. Powder Technol. 26(5), 1287–1293 (2015). https://doi.org/10.1016/j.apt.2015.07.002

    CAS  Article  Google Scholar 

  11. 11.

    Andrade, F.A.C., de Oliveira Vercik, L.C., Monteiro, F.J., da Silva Rigo, E.C.: Preparation, characterization and antibacterial properties of silver nanoparticles–hydroxyapatite composites by a simple and eco-friendly method. Ceram. Int. 42(2), 2271–2280 (2016). https://doi.org/10.1016/j.ceramint.2015.10.021

    CAS  Article  Google Scholar 

  12. 12.

    Lowry, N., Han, Y., Meenan, B.J., Boyd, A.R.: Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram. Int. 43(15), 12070–12078 (2017). https://doi.org/10.1016/j.ceramint.2017.06.062

    CAS  Article  Google Scholar 

  13. 13.

    Fakharzadeh, A., Ebrahimi-Kahrizsangi, R., Nasiri-Tabrizi, B., Basirun, W.J.: Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram. Int. 43(15), 12588–12598 (2017). https://doi.org/10.1016/j.ceramint.2017.06.136

    CAS  Article  Google Scholar 

  14. 14.

    Kolmas, J., Velard, F., Jaguszewska, A., Lemaire, F., Kerdjoudj, H., Gangloff, S.C., Kaflak, A.: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 638–646 (2017). https://doi.org/10.1016/j.msec.2017.05.066

    CAS  Article  Google Scholar 

  15. 15.

    Kaur, K., Singh, K., Anand, V., Islam, N., Bhatia, G., Kalia, N., Singh, J.: Lanthanide (= Ce, Pr, Nd and Tb) ions substitution at calcium sites of hydroxyl apatite nanoparticles as fluorescent bio probes: experimental and density functional theory study. Ceram. Int. 43(13), 10097–10108 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Yu, H.G., Liu, K.J., Zhang, F.M., Wei, W.X., Chen, C., Huang, Q.L.: Microstructure and in vitro bioactivity of silicon-substituted hydroxyapatite. Silicon. 9(4), 543–553 (2017). https://doi.org/10.1007/s12633-015-9298-3

    CAS  Article  Google Scholar 

  17. 17.

    Ratnayake, J.T., Mucalo, M., Dias, G.J.: Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 105(5), 1285–1299 (2017). https://doi.org/10.1002/jbm.b.33651

    CAS  Article  Google Scholar 

  18. 18.

    Boukha, Z., Kacimi, M., Ziyad, M., Ensuque, A., Bozon-Verduraz, F.: Comparative study of catalytic activity of Pd loaded hydroxyapatite and fluoroapatite in butan-2-ol conversion and methane oxidation. J. Mol. Catal. A Chem. 270(1–2), 205–213 (2007). https://doi.org/10.1016/j.molcata.2007.01.048

    CAS  Article  Google Scholar 

  19. 19.

    Ji, S., Murakami, S., Kamitakahara, M., Ioku, K.: Fabrication of titania/hydroxyapatite composite granules for photo-catalyst. Mater. Res. Bull. 44(4), 768–774 (2009). https://doi.org/10.1016/j.materresbull.2008.09.047

    CAS  Article  Google Scholar 

  20. 20.

    Shaabani, A., Shaabani, S., Afaridoun, H.: Highly selective aerobic oxidation of alkyl arenes and alcohols: cobalt supported on natural hydroxyapatite nanocrystals. RSC Adv. 6(54), 48396–48404 (2016). https://doi.org/10.1039/c6ra04519g

    CAS  Article  Google Scholar 

  21. 21.

    Dasireddy, V.D., Singh, S., Friedrich, H.B.: Effect of the support on the oxidation of heptane using vanadium supported on alkaline earth metal hydroxyapatites. Catal. Lett. 145(2), 668–678 (2015). https://doi.org/10.1007/s10562-014-1424-0

    CAS  Article  Google Scholar 

  22. 22.

    Dobosz, J., Hull, S., Zawadzki, M.: Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming. Pol. J. Chem. Technol. 18(3), 59–67 (2016). https://doi.org/10.1515/pjct-2016-0049

    CAS  Article  Google Scholar 

  23. 23.

    Ignat, L., Ignat, M.E., Gradinaru, I.: Hydroxyapatite-supported silver nanoparticles and preliminary investigations of their catalytic potential. Rev. Chim. 68(6), 1371–1374 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Lamonier, C., Lamonier, J.-F., Aellach, B., Ezzamarty, A., Leglise, J.: Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catal. Today. 164(1), 124–130 (2011). https://doi.org/10.1016/j.cattod.2010.10.035

    CAS  Article  Google Scholar 

  25. 25.

    Ben Osman, M., Diallo Garcia, S., Krafft, J.M., Methivier, C., Blanchard, J., Yoshioka, T., Kubo, J., Costentin, G.: Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Phys. Chem. Chem. Phys. 18(40), 27837–27847 (2016). https://doi.org/10.1039/c6cp05294k

    CAS  Article  Google Scholar 

  26. 26.

    Ben Osman, M., Krafft, J.M., Millot, Y., Averseng, F., Yoshioka, T., Kubo, J., Costentin, G.: Molecular understanding of the bulk composition of crystalline nonstoichiometric hydroxyapatites: application to the rationalization of structure–reactivity relationships. Eur. J. Inorg. Chem. 2016(17), 2709–2720 (2016). https://doi.org/10.1002/ejic.201600244

    CAS  Article  Google Scholar 

  27. 27.

    Stosic, D., Bennici, S., Sirotin, S., Calais, C., Couturier, J.L., Dubois, J.L., Travert, A., Auroux, A.: Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance. Appl. Catal. A Gen. 447, 124–134 (2012). https://doi.org/10.1016/j.apcata.2012.09.029

    CAS  Article  Google Scholar 

  28. 28.

    Carniti, P., Gervasini, A., Tiozzo, C., Guidotti, M.: Niobium-containing hydroxyapatites as amphoteric catalysts: synthesis, properties, and activity. ACS Catal. 4(2), 469–479 (2014). https://doi.org/10.1021/cs4010453

    CAS  Article  Google Scholar 

  29. 29.

    Ehiro, T., Misu, H., Nitta, S., Baba, Y., Katoh, M., Katou, Y., Ninomiya, W., Sugiyama, S.: Effects of acidic-basic properties on catalytic activity for the oxidative dehydrogenation of isobutane on calcium phosphates, doped and undoped with chromium. J. Chem. Eng. Jpn. 50(2), 122–131 (2017). https://doi.org/10.1252/jcej.16we217

    CAS  Article  Google Scholar 

  30. 30.

    Ogo, S., Onda, A., Yanagisawa, K.: Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl. Catal. A Gen. 348(1), 129–134 (2008). https://doi.org/10.1016/j.apcata.2008.06.035

    CAS  Article  Google Scholar 

  31. 31.

    Ramesh, K., Ling, E.G.Y., Gwie, C.G., White, T.J., Borgna, A.: Structure and surface reactivity of WO42−, SO42−, PO43− modified ca-hydroxyapatite catalysts and their activity in ethanol conversion. J. Phys. Chem. C Nanomater. Interfaces. 116(35), 18736–18745 (2012). https://doi.org/10.1021/jp304187v

    CAS  Article  Google Scholar 

  32. 32.

    Oh, S.C., Wu, Y., Tran, D.T., Lee, I.C., Lei, Y., Liu, D.: Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts. Fuel. 167, 208–217 (2016). https://doi.org/10.1016/j.fuel.2015.11.058

    CAS  Article  Google Scholar 

  33. 33.

    Gruselle, M., Tonsuaadu, K.: Tunable calcium-apatites as solid catalysts for classical organic reactions. Curr. Org. Chem. 21(8), 688–697 (2017). https://doi.org/10.2174/1385272821666161219155302

    CAS  Article  Google Scholar 

  34. 34.

    Matsumura, Y., Sugiyama, S., Hayashi, H., Shigemota, N., Saitoh, K., Moffat, J.B.: Strontium hydroxyapatites: catalytic properties in the oxidative dehydrogenation of methane to carbon oxides and hydrogen. J. Mol. Catal. A Chem. 92(1), 81–94 (1994). https://doi.org/10.1016/0304-5102(94)00058-1

    CAS  Article  Google Scholar 

  35. 35.

    Sugiyama, S., Minami, T., Moriga, T., Hayashi, H., Koto, K., Tanaka, M., Moffat, J.B.: Surface and bulk properties, catalytic activities and selectivities in methane oxidation on near-stoichiometric calcium hydroxyapatites. J. Mater. Chem. 6(3), 459–464 (1996). https://doi.org/10.1039/Jm9960600459

    CAS  Article  Google Scholar 

  36. 36.

    Badrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A., Zahir, M.: Décomposition de l’isopropanol sur les apatitesmixtes calcium-argent. Ann. Chim. Sci. Mater. 26(6), 131–138 (2001)

    CAS  Article  Google Scholar 

  37. 37.

    Sugiyama, S., Moffat, J.B.: Cation effects in the conversion of methanol on calcium, strontium, barium and lead hydroxyapatites. Catal. Lett. 81(1–2), 77–81 (2002). https://doi.org/10.1023/A:1016012106985

    CAS  Article  Google Scholar 

  38. 38.

    Ben Moussa, S., Lachheb, J., Gruselle, M., Maaten, B., Kriis, K., Kanger, T., Tõnsuaadu, K., Badraoui, B.: Calcium, barium and strontium apatites: a new generation of catalysts in the Biginelli reaction. Tetrahedron. 73(46), 6542–6548 (2017). https://doi.org/10.1016/j.tet.2017.09.051

    CAS  Article  Google Scholar 

  39. 39.

    Wuyts, S., De Vos, D.E., Verpoort, F., Depla, D., De Gryse, R., Jacobs, P.A.: A heterogeneous Ru–hydroxyapatite catalyst for mild racemization of alcohols. J. Catal. 219(2), 417–424 (2003). https://doi.org/10.1016/S0021-9517(03)00217-3

    CAS  Article  Google Scholar 

  40. 40.

    Carvalho, D.C., Pinheiro, L.G., Campos, A., Millet, E.R.C., de Sousa, F.F., Filho, J.M., Saraiva, G.D., da Silva, E.C., Fonseca, M.G., Oliveira, A.C.: Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Appl. Catal. A Gen. 471, 39–49 (2014). https://doi.org/10.1016/j.apcata.2013.11.014

    CAS  Article  Google Scholar 

  41. 41.

    Goller, G., Oktar, F., Agathopoulos, S., Tulyaganov, D., Ferreira, J., Kayali, E., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J. Sol-Gel Sci. Technol. 37(2), 111–115 (2006). https://doi.org/10.1007/s10971-006-6428-9

    CAS  Article  Google Scholar 

  42. 42.

    Garskaite, E., Gross, K.-A., Yang, S.-W., Yang, T.C.-K., Yang, J.-C., Kareiva, A.: Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm. 16(19), 3950–3959 (2014). https://doi.org/10.1039/c4ce00119b

    CAS  Article  Google Scholar 

  43. 43.

    Trinkunaite-Felsen, J., Stankeviciute, Z., Yang, J.C., Yang, T.C.K., Beganskiene, A., Kareiva, A.: Calcium hydroxyapatite/whitlockite obtained from dairy products: simple, environmentally benign and green preparation technology. Ceram. Int. 40(8), 12717–12722 (2014). https://doi.org/10.1016/j.ceramint.2014.04.120

    CAS  Article  Google Scholar 

  44. 44.

    Klemkaite-Ramanauske, K., Zilinskas, A., Taraskevicius, R., Khinsky, A., Kareiva, A.: Preparation of Mg/Al layered double hydroxide (LDH) with structurally embedded molybdate ions and application as a catalyst for the synthesis of 2-adamantylidene(phenyl)amine Schiff base. Polyhedron. 68, 340–345 (2014). https://doi.org/10.1016/j.poly.2013.11.009

    CAS  Article  Google Scholar 

  45. 45.

    Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Garskaite, E., Beganskiene, A., Kareiva, A.: Characterization of sol-gel processing of calcium phosphate thin films on silicon substrate by FTIR spectroscopy. Vib. Spectrosc. 85, 16–21 (2016). https://doi.org/10.1016/j.vibspec.2016.03.023

    CAS  Article  Google Scholar 

  46. 46.

    Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Beganskiene, A., Kareiva, A.: Sol–gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques. J. Sol-Gel Sci. Technol. 71(3), 437–446 (2014). https://doi.org/10.1007/s10971-014-3394-5

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by a grant SEMAT (No. SEN-02/2016) of the National Research Programme “Healthy ageing” from the Research Council of Lithuania.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akvile Ezerskyte-Miseviciene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• CHAp:M samples were synthesized by sol-gel and co-precipitation methods.

• CHAp:M samples prepared by co-precipitation method were almost single-phase.

• The surface morphology of CHAp:M samples depends very much on the synthesis method.

• CHAp:M as catalysts in the synthesis of 2-adamantylidene(phenyl)amine.

• The zinc-containing CHAp improved the yield of Schiff base.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezerskyte-Miseviciene, A., Bogdanoviciene, I., Zilinskas, A. et al. Synthesis, characterization and investigation of catalytic properties of metal-substituted (M = Mg2+, Zn2+ and Na+) calcium hydroxyapatite. J Aust Ceram Soc 56, 839–848 (2020). https://doi.org/10.1007/s41779-019-00402-x

Download citation

Keywords

  • CHAp
  • Substitution
  • Magnesium
  • Zinc
  • Sodium
  • Catalysis