Structure and morphology of synthesized lanthanum hydroxide [La(OH)3] nanocrystalline powders: study on fuel to oxidant ratio


An efficient process based on a solution combustion technique has been developed to produce high crystalline and nanometer-sized particles of lanthanum hydroxide [La(OH)3] using metal nitrate [La(NO3)3.6H2O] as oxidant and citric acid [C6H8O7] as fuel. Three fuel/oxidant ratios were chosen to study the effect of the fuel content on the phase formation and powder properties. X-ray diffraction analysis reveals the hexagonal phase [space group: P63/m (176)] of La(OH)3 (JCPDS no. 36-1481) without any additional impurity peaks. Since F/O ratio has significant control over flame temperature and the amount of gas release, the prepared La(OH)3 has F/O-dependent properties variation. SEM images of the prepared samples have different morphologies due to the change in the flame temperature, which in turn releases a lot of gases. The Raman spectral bands at 225, 278, 334, and 445 cm−1 and a weak broader peak 593 cm−1 confirmed the phase formation as reported for crystalline La(OH)3. The room-temperature photoluminescence spectra of La(OH)3 for the excitation at λex = 325 nm exhibit emission bands at 417 and 493 cm−1 corresponding to the typical blue band of La3+ ions. The recorded EDAX spectra indicate only the presence of La and O elements. It is observed that the sample prepared for F/O = 1.0 is almost stoichiometry than the other two samples, fuel lean and fuel rich. TEM images show typical degree of agglomeration and polydisperse with uniform size distribution. The dielectric constant of La(OH)3 has higher value (401) in the lower-frequency (100 Hz) than the value (54) measured at higher frequency (1 kHz). The fuel-to-oxidant ratio and temperature have been found to significantly effect the dielectric constant of La(OH)3. The physicochemical properties of [La(OH)3] nanoparticles are valuable for developing La-based applications such as catalysts and phosphors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Shek, C.H., Lai, J.K.L., Gu, T.S., Lin, G.M.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano - Al2O3 powders. Nanostruct. Mater. 8, 605–610 (1997)

    CAS  Google Scholar 

  2. 2.

    Janbey, A., Pati, R.K., Tahir, S., Pramanik, P.: A new chemical route for the synthesis of nano-crystalline α-Al2O3 powder. J. Eur. Ceram. Soc. 21, 2285–2289 (2001)

    CAS  Google Scholar 

  3. 3.

    Pathak, L.C., Singh, T.B., Das, S., Verma, A.K., Ramachandrarao, P.: Effect of pH on the combustion synthesis of nanocrystalline alumina powder. Mater. Lett. 57, 380–385 (2002)

    CAS  Google Scholar 

  4. 4.

    Kingsley, J.J., Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427–432 (1988)

    CAS  Google Scholar 

  5. 5.

    Kiminami, R.H.G.A., Morelli, M.R., Folz, D.C., Clark, D.E.: Microwave synthesis of alumina powders. Am. Cream. Soc. Bull. 79, 63–67 (2000)

    CAS  Google Scholar 

  6. 6.

    Wu, Y.Q., Zhang, Y.F., Huang, X.X., Guo, J.K.: Preparation of platelike nano alpha alumina particles. Cream. Int. 27, 265–268 (2001)

    CAS  Google Scholar 

  7. 7.

    Karasev, V.V., Onishchuk, A.A., Glotov, O.G., Baklanov, A.M., Zarko, V.E., Panfilov, V.N.: Charges and fractal properties of nanoparticles—combustion products of aluminium agglomerates. Combust. Explos. ShockWave. 37, 734–736 (2001)

    Google Scholar 

  8. 8.

    Fang, X.S., Zhang, L.: One-dimensional (1D) ZnS nanomaterials and nanostructures. J. Mater. Sci. Technol. 22, 721–736 (2006)

    CAS  Google Scholar 

  9. 9.

    Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 15, 63–68 (2005)

    CAS  Google Scholar 

  10. 10.

    Wu, Q.Z., Shen, Y., Liao, J.F., Li, Y.G.: Synthesis and characterization of three-dimensionally ordered macroporous rare earth oxides. Mater. Lett. 58, 2688–2691 (2004)

    CAS  Google Scholar 

  11. 11.

    Li, S.L., Zhang, S.X., Hu, H., Zhang, Y.H.: The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. J. Catal. 25, 762 (2004)

    CAS  Google Scholar 

  12. 12.

    Zhu, J.L., Zhou, Y.H., Yang, H.X.: Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode. J. Power Sources. 69, 169–173 (1997)

    CAS  Google Scholar 

  13. 13.

    Rosynek, M.P., Magnuson, D.T.: Preparation and characterization of catalytic lanthanum oxide. J. Catal. 46, 402–413 (1977)

    CAS  Google Scholar 

  14. 14.

    Veena Gopalan, E., Joy, P.A., Al-Omaric, I.A., Sakthi Kumar, D., Yoshida, Y., Anantharaman, M.R.: On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite. J. Alloy Compd. 485, 711–717 (2009)

    Google Scholar 

  15. 15.

    Salavati-Niasari, M., Khansari, A., Davar, F.: Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chim. Acta. 362, 4937–4942 (2009)

    CAS  Google Scholar 

  16. 16.

    Jeyadevan, B., Perales-Perez, O., Shinoda, K.: Magnetics. IEEE Transac. 38, 234 (2002)

    Google Scholar 

  17. 17.

    Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)

    CAS  Google Scholar 

  18. 18.

    Shi, M., Liu, N., Xu, Y., Yuan, Y., Majewski, P., Aldinger, F.: Synthesis and characterization of Sr- and Mg- doped LaGaO3 by using glycine-nitrate combustion method. J. Alloy Compd. 425, 348–352 (2006)

    CAS  Google Scholar 

  19. 19.

    Toksha, B.G., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun. 147, 479–483 (2008)

    CAS  Google Scholar 

  20. 20.

    Jain, S.R., Adiga, K.C., Pai Verneker, V.R.: A new approach to thermo-chemical calculations of condensed fuel–oxidizer mixtures. Combust. Flame. 40, 71–79 (1981)

    CAS  Google Scholar 

  21. 21.

    Marinsek, M., Zupan, K., Maeek, J.: Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources. 106, 178–188 (2002)

    CAS  Google Scholar 

  22. 22.

    Chakroborty, A., Das Sharma, A., Maiti, B., Maiti, H.S.: Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique. Mater. Lett. 57, 862–867 (2002)

    CAS  Google Scholar 

  23. 23.

    Mali, A., Ataie, A.: Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexa ferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004)

    CAS  Google Scholar 

  24. 24.

    Kuznetsov, M.V., Parkin, I.P., Caruana, D.J., Morozov, Y.G.: Combustion synthesis of alkaline-earth substituted lanthanum manganites LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3. J. Mater. Chem. 14, 1377–1382 (2004)

    CAS  Google Scholar 

  25. 25.

    Patil, C.K., Aruna, S.T., Mimani, T.: Combustion synthesis: an update. Curr. Opin Solid State Mater. Sci. 6, 507–512 (2002)

    CAS  Google Scholar 

  26. 26.

    Berger, D., Matei, C.: Synthesis of lanthanum based perovskite nano materials obtained by combustion method. Rev. Roum. Chim. 50, 889–894 (2005)

    CAS  Google Scholar 

  27. 27.

    Deshpande, K., Mukasyan, A.S., Varma, A.: Aqueous combustion synthesis of strontium-doped lanthanum chromite ceramics. J. Am. Ceram. Soc. 86, 1149–1154 (2003)

    CAS  Google Scholar 

  28. 28.

    Khandekar, M.S., Kambale, R.C., Latthe, S.S., Patil, J.Y., Shaikh, P.A., Hur, N., Suryavanshi, S.S.: Role of fuels on intrinsic and extrinsic properties of CoFe2O4 synthesized by combustion method. Mat. Lett. 65, 2972–2974 (2011)

    CAS  Google Scholar 

  29. 29.

    Qiting, L.I., Jiansen, N.I., Yiqing, W.U., Yanan, D.U., Weizhong, D., Shuhua, G.: Synthesis and characterization of La(OH)3 nanopowders from hydrolysis of lanthanum carbide. J. Rare Earths. 29, 416–419 (2011)

    Google Scholar 

  30. 30.

    Salavati-Niasari, M., Mir, N., Davar, F.: ZnO nanotriangles: Synthesis, characterization and optical properties. J. Alloy Compd. 476, 908–912 (2009)

    CAS  Google Scholar 

  31. 31.

    Mazloumi, M., Shahcheraghi, N., Kajbafvala, A., Zanganeh, S., Lak, A., Mohajerani, M.S., Sadrnezhaad, S.K.: 3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. J. Alloy. Compd. 473, 283–287 (2009)

    CAS  Google Scholar 

  32. 32.

    Chen, W., Zhou, A.: Microemulsion-solvothermal synthesis and tunable emission of YBO3:Eu for white-light-emitting diodes. J. Phys. Chem. C. 116, 24748–24751 (2012)

    CAS  Google Scholar 

  33. 33.

    Lin, C.S., Hwang, C.C., Lee, W.H., Tong, W.Y.: Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method. Mat. Sci. Engin.: B. 140, 31–37 (2007)

    CAS  Google Scholar 

  34. 34.

    Sharma, S.K., Pitale, S.S., Malik, M., Dubey, R.N., Qureshi, M.S., Ojha, S.: Influence of fuel/oxidizer ratio on lattice parameters and morphology of combustion synthesized ZnO powders. Physica B. 405, 866–874 (2010)

    CAS  Google Scholar 

  35. 35.

    Toniolo, J.C., Lima, M.D., Takimi, A.S., Bergmann, C.P.: Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull. 40, 561–571 (2005)

    CAS  Google Scholar 

  36. 36.

    Alarifi, A., Deraz, N.M., Shaban, S.: Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloys Compd. 486, 501–506 (2009)

    CAS  Google Scholar 

  37. 37.

    Deraz, N.M.: Glycine-assisted fabrication of nanocrystalline cobalt ferrite system. J. Anal. Appl. Pyrolysis. 88, 103–109 (2010)

    CAS  Google Scholar 

  38. 38.

    Mokkelbost, T., Kaus, I., Grande, T., Einarsrud, M.A.: Combustion synthesis and characterization of nanocrystalline CeO2- based powders. Chem. Mater. 16, 5489–5494 (2004)

    CAS  Google Scholar 

  39. 39.

    Reddy, B.S.B., Mal, I., Tewari, S., Das, K., Das, S.: Aqueous combustion synthesis and characterization of nanosized tetragonal zirconia single crystals. Mater. Trans. A. 38, 1786–1793 (2007)

    Google Scholar 

  40. 40.

    Hwang, C.C., Wu, T.Y.: Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater. Sci. Eng. B. 111, 197–206 (2004)

    Google Scholar 

  41. 41.

    McKittrick, J., Shea, L.E., Bacalski, C.F., Bosze, E.J.: The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays. 19, 169–172 (1999)

    CAS  Google Scholar 

  42. 42.

    Kosacki, I., Suzuki, T., Anderson, H.U., Colomban, P.: Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics. 149, 99–105 (2002)

    CAS  Google Scholar 

  43. 43.

    Chan, S., Bell, A.: Characterization of the preparation of PdSiO2 and PdLa2O3 by laser Raman spectroscopy. J. Catal. 89, 433–441 (1984)

    CAS  Google Scholar 

  44. 44.

    Cornaglia, L.M., Múnera, J., Irusta, S., Lombardo, E.A.: Raman studies of Rh and Pt on La2O3 catalysts used in a membrane reactor for hydrogen production. Appl. Catal. A. 263, 91–101 (2004)

    CAS  Google Scholar 

  45. 45.

    Li, J.Y.: Luminescent materials of rare earths and their applications, p. 8. Chemical Industry, Beijing (2003)

    Google Scholar 

  46. 46.

    Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., Gnade, B.E.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7970 (1996)

    CAS  Google Scholar 

  47. 47.

    Russ, J.C.: Fundamentals of energy dispersive X-ray analysis. Butterworths, London (1984)

    Google Scholar 

  48. 48.

    Miller, B.V., Lines, R.W.: Recent advances in particle size measurements: a critical review. CRC Crit. Rev. Anal Chem. 20, 75–116 (1988)

    CAS  Google Scholar 

  49. 49.

    Baker, T.N.: 5th International Conference on Quantitive Microscopy of High Temperature Materials. 5, 161–189 (2001)

  50. 50.

    Allen, T.: Particle size measurement, 5th edn, 1 & 2. Chapman and Hall (1997)

  51. 51.

    Nalwa, H.S.: Encyclopedia for Nanoscience and Nanotechnology. 1, American Scientific Publishers. (2004)

  52. 52.

    Jillavenkatesa, A., Dapksunas, S.J., Lum Lin-Sien, H.: Particle size characterization, NIST Recommended Practical Guide. (2001)

  53. 53.

    Smyth, C.P.: Dielectric behavior and structure. McGraw-Hill, New York (1965)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Anslin Ferby.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferby, V.A., Raj, A.M.E. & Bououdina, M. Structure and morphology of synthesized lanthanum hydroxide [La(OH)3] nanocrystalline powders: study on fuel to oxidant ratio. J Aust Ceram Soc 56, 711–720 (2020).

Download citation


  • Combustion synthesis
  • Nanopowders
  • X-ray diffraction
  • Raman spectroscopy
  • Photoluminescence
  • Transmission electron microscopy