Hydroxyapatite incorporation into MCM-41 and study of ibuprofen drug release


In this study, the mesoporous silica/hydroxyapatite (MCM/HA) was successfully synthesized by a simple one-step method as a controlled drug delivery system. The characterization of mesoporous materials was carried out by X-ray diffraction (XRD), transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (XRF), N2 adsorption/desorption analysis, and ultraviolet spectroscopy. Furthermore, ibuprofen (IBU) drug storage capacities and release rate were studied at in vitro conditions. The XRD and HRTEM results showed the formation of hydroxyapatite nanocrystals into mesoporous silica channels. The BET results indicated that the formation of hydroxyapatite into meso-channels leads to decrease in MCM-41 surface area and pore volume. In addition, the ibuprofen loading and release results showed that adsorption and release behavior of ibuprofen were extremely depended on the interaction of the MCM-41 surface groups and ibuprofen and carrier structural properties in the presence of hydroxyapatite crystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Chen X, Wen H and Park K: Challenges and new technologies of oral controlled release. Oral Controlled Release Formulation Design and Drug Delivery. Theory to Practice. 16, 257(2010)

  2. 2.

    Maderuelo, C., Zarzuelo, A., Lanao, J.M.: Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 154, 2 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    Amatya, S., Park, E.J., Park, J.H., Kim, J.S., Seol, E., Lee, H., Choi, H., Shin, Y.H., Na, D.H.: Drug release testing methods of polymeric particulate drug formulations. J. of Pharmaceutical Investigation. 43, 259–266 (2013)

  4. 4.

    Yousefpour, M., Taherian, Z.: The effects of ageing time on the microstructure and properties of mesoporous silica-hydroxyapatite nanocomposite. Superlattice. Microst. 54, 78 (2013)

    CAS  Article  Google Scholar 

  5. 5.

    Naghiloo, M., Yousefpour, M., Nourbakhsh, M.S., Taherian, Z.: Functionalization of SBA-16 silica particles for ibuprofen delivery. J. Sol-Gel Sci. Technol. 74, 537 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Porras, Q.A.G., Campero Celts, C., Velasquez Ordonez, M.L., Martinez, O.: SBA-type mesoporous materials with cylindrical and spherical structures for the controlled loading and release of ibuprofen. J. Sol-Gel Sci. Technol. 85, 486 (2018)

    Article  Google Scholar 

  7. 7.

    Anderson, J., Rosenholm, J., Linden, M.: Mesoporous silica: an alternative diffusion controlled drug delivery system.Topics in Multifunctional Biomaterials and Devices, Ed. N Ashammakhi 6, 1–9 (2008).

  8. 8.

    Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.:  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359, 710 (1992)

    CAS  Article  Google Scholar 

  9. 9.

    Vallet-Regi, M., Ramila, A., Del Real, R.P., Pérez-Parents, J.: A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    Manzano, M., Aina, V., Arean, C.O., Balas, F., Cauda, V., Colilla, M., Delgado, M.R., Vallet-Regi, M.: Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem. Eng. J. 137, 30 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    Kalantari, S., Yousefpour, M., Taherian, Z.: Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals. Rare Metals. 36, 942 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Taherian, Z., Yousefpour, M., Tajally, M., Khoshandam, B.: Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous Mesoporous Mater. 25, 19 (2017)

    Google Scholar 

  13. 13.

    Azizi Ganzagh, M.A., Yousefpour, M., Taherian, Z.: The removal of mercury (II) from water by ag supported on nanomesoporous silica. J. Chem. Biol. 9, 127 (2016)

    Article  Google Scholar 

  14. 14.

    Jacinto, M.J., WizbikiL, M., Justine, V., Silva, C.: Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions. J. Sol-Gel Sci. Technol. 77, 298 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Cecilia, J.A., García-Sancho, C., Mérida-Robles, J.M., Santamaría-González, J., Infantes-Molina, A., Moreno-Tots, R., Maireles-Torres, P.: Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. J. Sol-Gel Sci. Technol. 342, 83 (2017)

    Google Scholar 

  16. 16.

    Ruiz-Hernández, E., Baeza, A., Vallet-Regí, M.: Smart drug delivery through DNA/magnetic nanoparticle gates. Am. Chem. Soc. 5, 1359 (2011)

    Google Scholar 

  17. 17.

    Vallet-Regı, M., Doadrio, J.C., Doadrio, A.L., Izquierdo-Barba, I., Pérez-Pariente, J.: Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 172, 435 (2004)

    Article  Google Scholar 

  18. 18.

    Paris, J.L., Victoria Cabañas, M., Manzano, M., Vallet-Regí, M.: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 9, 11023 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Vallet-Regí M, Izquierdo-Barba I, Colilla M: Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. 370, 1421(2012)

  20. 20.

    Colville, M., González, B., Vallet-Regí, M.: Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomaterials Science. 1, 114 (2013)

    Article  Google Scholar 

  21. 21.

    Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., Lin, V.S.Y.: Mesoporous silica nanoparticles for intracellular controlled drug delivery.Wiley Online Library. Small. 6, 1952 (2010)

  22. 22.

    Hu, Y., Zhi, Z., Zhao, Q., Wu, C., Zhao, P., Jiang, H., Jiang, T.: 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147, 94 (2012)

    Article  Google Scholar 

  23. 23.

    Szegedi, A., Popova, M., Goshev, I., Mihaly, J.: Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. 184, 1201 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    Thomas, M.J.K., Slipper, I., Walunj, A., Jain, A., Favretto, M.E., Kallinteri, P., Douroumis, D.: Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int. J. Pharm. 387, 272 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    Wang, S.: Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 117, 1 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    Izquierdo-Barba, I., Ruiz-Gonzalez, L., Doadrio, J.C., Gonzalez-Calbet, J.M., Vallet-Regi, M.: Tissue regeneration: a new property of mesoporous materials. J Solid State Science. 7, 983 (2005)

    CAS  Article  Google Scholar 

  27. 27.

    Balas, F., Pérez-Pariente, J., Vallet-Regí, M.: In vitro bioactivity of silicon-substituted hydroxyapatites. J. of Biomedical  Materials  Research. A. 66, 364 (2003)

  28. 28.

    Martinez, A., Izquierdo-Barba, I., Vallet-Regi, M.: Bioactivity of a CaO−SiO2 binary glasses system. Chem. Mater. 12, 3080 (2000)

    CAS  Article  Google Scholar 

  29. 29.

    Arcos, D., Vallet-Regí, M.: Bioceramics for drug delivery. Acta Mater. 61, 890 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    Shi, D., Jiang, G., Bauer, J.: The effect of structural characteristics on the in vitro bioactivity of hydroxyapatite. J. Biomed. Mater. Res. 63, 71 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    Li, X., Zhang, L., Dong, X., Liang, J., Shi, J.: Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater. 102, 151 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Yousefpour, M., Afshar, A., Yang, X., Li, X., Yang, B., Wu, Y., Chen, J., Zhang, X.: Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. J. Electroanal. Chem. 6589, 96 (2006)

    Article  Google Scholar 

  33. 33.

    Yang, H., Deng, Y., Du, C.: Synthesis and optical properties of mesoporous MCM-41containing doped TiO2 nanoparticles. J Colloid Sur A: Physicochem Eng Aspects. 339, 111 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    Li, Z., Su, K., Cheng, B., Deng, Y.: Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J. Colloid  and Interface Science. 342, 607 (2010)

  35. 35.

    Sousa, A., Souza, K.C., Sousa, E.M.B.: Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery. Acta Biomater. 4, 671 (2008)

    CAS  Article  Google Scholar 

Download references


Authors gratefully thank the Nanonafez Company in Semnan University Science and Technology Park, Shahroud Branch Islamic Azad University, and Shahroud University of Medical Science for supporting the research work.

Author information



Corresponding author

Correspondence to Sahar Molzemi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jani, A.T., Haghighi, N.B., Sheikh Hossein Pour, M. et al. Hydroxyapatite incorporation into MCM-41 and study of ibuprofen drug release. J Aust Ceram Soc 56, 653–661 (2020). https://doi.org/10.1007/s41779-019-00384-w

Download citation


  • Mesoporous silica
  • MCM-41
  • Drug release
  • Ibuprofen
  • Hydroxyapatite