In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells


In this study, α-TCP and β-TCP were successfully produced via a mechanochemical method from aragonite structures, Clinocardium ciliatum seashells, at 850 °C, 1000 °C, and 1200 °C sintering temperatures. The characterization of the obtained materials was carried out via FT-IR, SEM/EDX, BET, XRD, ICP-OES analysis. Samples were soaked for 21 days in simulated body fluid (SBF) for a bioactivity test. Additionally, MTT assay was applied to determine the cell viability of samples. Bioactivity in vitro tests showed that bone-like hydroxyapatite formed when the α-TCP and β-TCP were soaked in SBF. TCP bioceramics had a noncytotoxicity effect on SAOS-2 osteoblast-like cells and cell viability increased in 1 to 7 days. The produced bioceramics have ideal pore sizes and properties that are suitable for supporting biological activities. Tris-HCl buffer solution was used to obtain the level of biodegradation. It was seen that α-TCP exhibited better dissolution features than β-TCP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    León, B., Jansen, J.: Thin Calcium Phosphate Coatings for Medical Implants, New York (2009)

  2. 2.

    Sych, O., Iatsenko, A., Tomila, T., Otychenko, O., Bykov, O., Yevych, Y.: Si-modified highly-porous ceramics based on nanostructured biogenic hydroxyapatite for medical use. Adv. Nano-Bio-Mater. Dev. 2, 223–229 (2018)

    Google Scholar 

  3. 3.

    Perera, F.H., Martínez, V., Miranda, F.J., Ortiz, P., Pajares, A.L.: Clarifying the effect of sintering conditions on the microstructure and mechanical properties of β-tricalcium phosphate. Ceram Int. 6, 1929–1935 (2010)

    Article  Google Scholar 

  4. 4.

    Metsger, D.S., Driskell, T.D., Paulsrud, J.R.: Tricalcium phosphate ceramic--α resorbable bone implant: review and current status. J Am Dent Assoc. 6, 1035–1038 (1982)

    Article  Google Scholar 

  5. 5.

    Cho, I.S., Ryu, H.S., Kim, J., Kim, D.W., Hong, K.S.: Sintering behavior and microwave dielectric properties of tricalcium phosphate polymorphs. Jpn J Appl Phys. 46, 2999–3003 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Horch, H.H., Sader, R., Pautke, C., Neff, A., Deppe, H., Kolk, A.: Synthetic pure-phase β-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 8, 708–713 (2006)

    Article  Google Scholar 

  7. 7.

    Jung, U.W., Moon, H.I., Kim, C., Lee, Y.K., Kim, C.K., Choi, S.H.: Evaluation of different grafting materials in three-wall intra-bony defects around dental implants in beagle dogs. Curr. Appl. Phys. 5, 507–511 (2005)

    Article  Google Scholar 

  8. 8.

    Yoneda, M., Terai, H., Imai, Y., Okada, T., Nozaki, K., Inoue, H., Miyamoto, S., Takaoka, K.: Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing Implant. Biomaterials. 26(25), 5145–5152 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    Sous, M., Bareille, R., Rouais, F., Clément, D., Amédée, J., Dupuy, B., Baquey, C.: Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics. Biomaterials. 19(23), 2147–2153 (1998)

    CAS  Article  Google Scholar 

  10. 10.

    Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2(4), 457–466 (2006)

    Article  Google Scholar 

  11. 11.

    Miranda, P., Pajares, A., Saiz, E., Tomsia, A.P., Guiberteau, F.: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A. 1(85), 218–227 (2008)

    Article  Google Scholar 

  12. 12.

    Durucan, C., Brown, P.W.: Reactivity of alpha-tricalcium phosphate. J. Mater. Sci. 5(37), 963–969 (2002)

    Article  Google Scholar 

  13. 13.

    Rao, R.R., Mariappan, L.: Synthesis of nanohydroxyapatite and hydroxyapatite - polycaprolactone composite. Adv. Nano-Bio-Mater. Dev. 1, 86–98 (2017)

    Google Scholar 

  14. 14.

    Chou, J., Samur, R., Ozyegin, L.S., Ben-Nissan, B., Oktar, F.N., Macha, I.: An alternative synthesis method for di calcium phosphate (Monetite) powders from Mediterranean mussel (Mytilus galloprovincialis) shells. J Aust. Ceram. Soc. 2(49), 122–128 (2012)

    Google Scholar 

  15. 15.

    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., Oktar, F.N.: A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J Nanomater. 2014, 1–6 (2014)

    Article  Google Scholar 

  16. 16.

    Şahin, Y., Gündüz, O., Bulut, B., Özyeğin, L., Gökçe, H., Ağaoğulları, D., Chou, J., Kayalı, E., Ben-Nissan, B., Oktar, F.: Nano-bioceramic synthesis from tropical sea snail shells (Tiger cowrie - Cypraea Tigris) with simple chemical treatment. Acta. Phys. Pol A. 4(127), 1055–1058 (2015)

    Article  Google Scholar 

  17. 17.

    Ağaoğullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M.L., Akarsubaşi, A.T., Bilgiç, D., Oktar, F.N.: Bioceramic production from sea urchins. Acta. Phys. Pol. A. 121(1), 23–25 (2012)

    Article  Google Scholar 

  18. 18.

    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ağaoğulları, D., Gökçe, H., Kayali, E.S., Aktas, C., Ben-Nissan, B., Oktar, F.N.: Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Eng Mater. 587, 80–85 (2013)

    Article  Google Scholar 

  19. 19.

    Tămăşan, M., Ozyegin, L.S., Oktar, F.N., Simon, V.: Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Mater. Sci. Eng. C. 33(5), 2569–2577 (2013)

    Article  Google Scholar 

  20. 20.

    Lemos, A.F., Rocha, J.H.G., Quaresma, S.S.F., Kannan, S., Oktar, F.N., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 26(16), 3639–3646 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    Samavedi, S., Whittington, A.R., Goldstein, A.S.: Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta. Biomater. 9(9), 8037–8045 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Santos, E.A., Farina, M., Soares, G.A., Anselme, K.: Chemical and topographical influence of hydroxyapatite and beta-tricalcium phosphate surfaces on human osteoblastic cell behavior. J Biomed. Mater. Res. A. 89(2), 510–520 (2009)

    Article  Google Scholar 

  23. 23.

    Jalota, S., Bhaduri, S.B., Tas, A.C.: In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. J Biomed. Mater. Res. A. 78(3), 481–490 (2006)

    Article  Google Scholar 

  24. 24.

    R.T. Abbott and P.A. Morris, A field guide to shells: Atlantic and Gulf Coasts and the West Indies., (1995), N Y

  25. 25.

    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15), 2907–2915 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    Sobczak-Kupiec, A., Wzorek, Z., Kijkowska, R., Kowalski, Z.: Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid. Bull Mater Sci. 36(4), 755–764 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    Descamps, M., Hornez, J.C., Leriche, A.: Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J Eur Ceram Soc. 27(6), 2401–2406 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    Uchino, T., Yamaguchi, K., Suzuki, I., Kamitakahara, M., Otsuka, M., Ohtsuki, C.: Hydroxyapatite formation on porous ceramics of α-tricalcium phosphate in a simulated body fluid. J Mater Sci Mater Med. 21(6), 1921–1926 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    Duan, Y.R., Zhang, Z.R., Wang, C.Y., Chen, J.Y., Zhang, X.D.: Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci Mater Med. 16(9), 795–801 (2005)

    CAS  Article  Google Scholar 

  30. 30.

    Ozeki, K., Fukui, Y., Aoki, H.: Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl Surf Sci. 253(11), 5040–5044 (2007)

    CAS  Article  Google Scholar 

Download references


Special thanks to ArelPOTKAM (Polymer Technologies and Composite Application and Research Center) where the synthesis of bioceramics took place.

Author information



Corresponding author

Correspondence to Yesim Muge Sahin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahin, Y.M., Orman, Z. & Yucel, S. In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells. J Aust Ceram Soc 56, 477–488 (2020).

Download citation


  • Bioactivity
  • Bone regeneration
  • SBF
  • Seashell
  • TCP
  • Tris