Pyroelectric performance of [Bi0.48Na0.4032K0.0768]Sr0.04(Ti0.975Nb0.025)O3 ceramics

Abstract

In the present work, the pyroelectric performance of [Bi0.48Na0.4032K0.0768]Sr0.04(Ti0.975Nb0.025)O3 (BNT-2.5Nb) ceramics is investigated. At room temperature, the value of pyroelectric coefficient found as 13.2 × 10−4 C/m2 K which is higher than many lead-free ferroelectric materials. Further, the pyroelectric figures of merit (FOMs) for detectivity (Fd), voltage responsivity (Fv), current responsivity (Fi), and energy harvesting (Fe*) are calculated. BNT-2.5Nb ceramics show pyroelectric open circuit voltage as 0.45 V when it was exposed to temporal temperature gradient. This work result indicates that the Nb-doping in Bi0.5Na0.5TiO3-based composition can be beneficial for lead-free pyroelectric device applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bauer, S., Ploss, B.: A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors. J. Appl. Phys. 68(12), 6361–6367 (1990)

    CAS  Article  Google Scholar 

  2. 2.

    Whatmore, R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)

    CAS  Article  Google Scholar 

  3. 3.

    Patel, S., Chauhan, A., Vaish, R.: Electrocaloric behavior and temperature-dependent scaling of dynamic hysteresis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. Int. J. Appl. Ceram. Technol. 12(4), 899–907 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Charlot, B., Coudouel, D., Very, F., Combette, P., Giani, A.: Droplet generation for thermal transient stimulation of pyroelectric PZT element. Sens. Actuators A: Phys. 225, 103–110 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    Bowen, C., Taylor, J., Le Boulbar, E., Zabek, D., Topolov, V.Y.: A modified figure of merit for pyroelectric energy harvesting. Mater. Lett. 138, 243–246 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self-powered micro/nanosystems. Angew. Chem. Int. Ed. 51(47), 11700–11721 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    Vaish, M., Sharma, M., Vaish, R., Chauhan, V.S.: Electrical energy generation from hot/cold air using pyroelectric ceramics. Integr. Ferroelectr. 167(1), 90–97 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    Madhar, N.A., Ilahi, B., Vaish, M.: Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr. Ferroelectr. 167(1), 176–183 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Lang, S.B.: Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today. 58(8), 31 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, G., Jiang, S., Zeng, Y., Zhang, Y., Zhang, Q., Yu, Y.: High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J. Am. Ceram. Soc. 92(12), 3132–3134 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    Patel, S., Chauhan, A., Kundu, S., Madhar, N.A., Ilahi, B., Vaish, R., et al.: Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping. AIP Adv. 5(8), 087145 (2015)

    Article  Google Scholar 

  12. 12.

    Patel, S., Chauhan, A., Vaish, R.: Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci. 52, 10–18 (2016)

    Article  Google Scholar 

  13. 13.

    Wang, X., Wu, J., Xiao, D., Zhu, J., Cheng, X., Zheng, T., et al.: Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

  14. 14.

    Liu, L., Huang, Y., Su, C., Fang, L., Wu, M., Hu, C., et al.: Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A. 104(4), 1047 (2011)

  15. 15.

    Li, J., Wang, F., Leung, C.M., Or, S.W., Tang, Y., Chen, X., et al.: Large strain response in acceptor-and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J. Mater. Sci. 46(17), 5702 (2011)

  16. 16.

    Liu, Z., Ren, W., Nie, H., Peng, P., Liu, Y., Dong, X., et al.: Pressure driven depolarization behavior of Bi0.5Na0.5TiO3 based lead-free ceramics. Appl. Phys. Lett. 110(21), 212901 (2017)

  17. 17.

    Kang, S.-I., Lee, J.-H., Kim, J.-J., Lee, H.Y., Cho, S.-H.: Effect of sintering atmosphere on densification and dielectric characteristics in Sr0.5Ba0.5Nb2O6 ceramics. J. Eur. Ceram. Soc. 24(6), 1031–1035 (2004)

  18. 18.

    Gao, J., Hu, X., Zhang, L., Li, F., Zhang, L., Wang, Y., et al.: Major contributor to the large piezoelectric response in (1-x)Ba (Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion. Appl. Phys. Lett. 104(25), 252909 (2014)

  19. 19.

    Wang, X., Tang, X., Chan, H.: Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85(1), 91–93 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    Zuo, R., Ye, C., Fang, X., Li, J.: Tantalum doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28(4), 871–877 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    Guo, F.-F., Yang, B., Zhang, S.-T., Liu, X., Zheng, L.-M., Wang, Z., et al.: Morphotropic phase boundary and electric properties in (1-x)Bi0.5Na0.5TiO3-xBiCoO3 lead-free piezoelectric ceramics. J. Appl. Phys. 111(12), 124113 (2012)

  22. 22.

    Liu, X., Tan, X.: Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28(3), 574–578 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    Malik, R.A., Hussain, A., Zaman, A., Maqbool, A., Rahman, J.U., Song, T.K., et al.: Structure-property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 incipient piezoceramics. RSC Adv. 5(117), 96953–96964 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    Ullah, A., Malik, R.A., Ullah, A., Lee, D.S., Jeong, S.J., Lee, J.S., et al.: Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34(1), 29–35 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Pham, K.-N., Hussain, A., Ahn, C.W., Ill, W.K., Jeong, S.J., Lee, J.-S.: Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64(20), 2219–2222 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, J., Dong, X., Cao, F., Guo, S., Wang, G.: Enhanced pyroelectric properties of Cax(Sr0.5Ba0.5)1-xNb2O6 lead-free ceramics. Appl. Phys. Lett. 102(10), 102908 (2013)

    Article  Google Scholar 

  27. 27.

    Hiruma, Y., Nagata, H., Takenaka, T.: Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104(12), 124106 (2008)

    Article  Google Scholar 

  28. 28.

    Yu, P., Ji, Y., Neumann, N., Lee, S.-G., Luo, H., Es-Souni, M.: Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59(9), 1983–1989 (2012)

    Article  Google Scholar 

  29. 29.

    Tang, Y., Luo, H.: Investigation of the electrical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with special reference to pyroelectric detection. J. Phys. D. Appl. Phys. 42(7), 075406 (2009)

    Article  Google Scholar 

  30. 30.

    Liu, X., Chen, Z., Wu, D., Fang, B., Ding, J., Zhao, X., et al.: Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn. J. Appl. Phys. 54(7), 071501 (2015)

    Article  Google Scholar 

  31. 31.

    Sun, R., Wang, J., Wang, F., Feng, T., Li, Y., Chi, Z., et al.: Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J. Appl. Phys. 115(7), 074101 (2014)

    Article  Google Scholar 

  32. 32.

    Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014)

    Article  Google Scholar 

  33. 33.

    Lau, S.T., Cheng, C., Choy, S., Lin, D., Kwok, K., Chan, H.L.: Lead-free ceramics for pyroelectric applications. J. Appl. Phys. 103(10), 104105 (2008)

    Article  Google Scholar 

  34. 34.

    Lang, S.B., Das-Gupta, D.K.: Pyroelectricity: fundamentals and applications. In: Handbook of Advanced Electronic and Photonic Materials and Devices, pp. 1–55. Elsevier (2001)

Download references

Acknowledgements

Rahul Vaish acknowledges the support from the Indian National Science Academy (INSA), New Delhi, India, through a grant by the Department of Science and Technology (DST), New Delhi, India under the INSA Young Scientists Award. Satyanarayan Patel would like to acknowledge sponsorship provided by the Alexander-von-Humboldt Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srikanth, K.S., Singh, V.P., Patel, S. et al. Pyroelectric performance of [Bi0.48Na0.4032K0.0768]Sr0.04(Ti0.975Nb0.025)O3 ceramics. J Aust Ceram Soc 56, 395–402 (2020). https://doi.org/10.1007/s41779-019-00343-5

Download citation

Keywords

  • Pyroelectric
  • Lead-free
  • Dielectric