Skip to main content
Log in

Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This paper deals with the preparation and development of carbon nanotubes (CNT)-reinforced chromium oxide coatings. The 8% by weight CNT was reinforced with 92% by weight chromium oxide. The composite powder was blended in a ball mill and deposited successfully with high velocity oxy-fuel spraying technique. The microhardness of CNT-reinforced coating was found to be 30% higher than conventional coatings. The CNT reinforcement was able to decrease porosity of composite by 20%. The XRD spectrum indicated that CNT were present in pure graphite form and were found to be chemically inert during the spraying process. CNT did not react with chromium oxide to form carbides. The metallurgical analysis of surface and cross-section of composite coating revealed that CNT were uniformly distributed throughout the composite matrix, and formed a bridge-like structure between the splats of chromium oxide, which improved the properties of composite coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Overney, G., Zhong, W., Tomanek, D.: Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D: At Mol Clusters. 27(1), 93–96 (1993)

    Article  Google Scholar 

  2. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  3. Kanagaraj, S., Varanda, F.R., Zhil’tsova, T.V., Oliveira, M.S., Simões, J.A.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol. 67(15), 3071–3077 (2007)

    Article  Google Scholar 

  4. Rawal, S.P.: Metal-matrix composites for space applications. JOM J Miner Met Mater Soc. 53(4), 14–17 (2001)

    Article  Google Scholar 

  5. Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater. 12(10), 750–753 (2000)

    Article  Google Scholar 

  6. Esawi, A., Morsi, K., Sayed, A., Taher, M., Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol. 70(16), 2237–2241 (2010)

    Article  Google Scholar 

  7. Bhaskar, S.V., Rajmohan, T., Palanikumar, K., Kumar, B.B.G.: Synthesis and characterization of multi wall carbon nanotubes (MWCNT) reinforced sintered magnesium matrix composites. J Inst Eng (India): Ser D. 97(1), 59–67 (2016)

    Google Scholar 

  8. Qi, X., Eigen, N., Aust, E., Gärtner, F., Klassen, T., Bormann, R.: Two-body abrasive wear of nano- and microcrystalline TiC–Ni-based thermal spray coatings. Surf Coat Technol. 200(16–17), 5037–5047 (2006)

    Article  Google Scholar 

  9. Tillmann, W., Vogli, E., Baumann, I., Kopp, G., Weihs, C.: Desirability-based multi-criteria optimization of HVOF spray experiments to manufacture fine structured wear-resistant 75Cr3C2-25(NiCr20) coatings. J Therm Spray Technol. 19(1–2), 392–408 (2010)

    Article  Google Scholar 

  10. Turunen, E., Varis, T., Gustafsson, T.E., Keskinen, J., Fält, T., Hannula, S.-P.: Parameter optimization of HVOF sprayed nanostructured alumina and alumina–nickel composite coatings. Surf Coat Technol. 200(16–17), 4987–4994 (2006)

    Article  Google Scholar 

  11. Roy, M., Pauschitz, A., Polak, R., Franek, F.: Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr 3 C 2–25 (Ni20Cr) coatings with conventional and nano-crystalline grains. Tribol Int. 39(1), 29–38 (2006)

    Article  Google Scholar 

  12. Goyal, K., Singh, H., Bhatia, R.: Current status of thermal spray coatings for high temperature corrosion resistance of boiler steel. J Mater Metall Eng. 6(1), 29–35 (2016)

    Google Scholar 

  13. Sidhu, V.P.S., Goyal, K., Goyal, R.: Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant. J Aust Ceram Soc. 53(2), 925–932 (2017)

    Article  Google Scholar 

  14. Bolelli, G., Cannillo, V., Lusvarghi, L., Montorsi, M., Mantini, F.P., Barletta, M.: Microstructural and tribological comparison of HVOF-sprayed and post-treated M–Mo–Cr–Si (M= Co, Ni) alloy coatings. Wear. 263(7), 1397–1416 (2007)

    Article  Google Scholar 

  15. Ding, C., Chen, H., Liu, X., and Zeng, Y.: Thermal spray 2003: advancing the science & applying the technology. In: Moreau, C. and Marple (eds.), B., Published by ASM International, Materials Park, Ohio, USA, Pp. 455–458 (2003)

  16. Dragos, U., Gabriela, M., Waltraut, B., Ioan, C.: Improvement of the oxidation behaviour of electron beam remelted MCrAlY coatings. Solid State Sci. 7(4), 459–464 (2005)

    Article  Google Scholar 

  17. Uusitalo, M., Vuoristo, P., Mäntylä, T.: High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits. Corros Sci. 46(6), 1311–1331 (2004)

    Article  Google Scholar 

  18. Chatha, S.S., Sidhu, H.S., Sidhu, B.S.: Characterisation and corrosion-erosion behaviour of carbide based thermal spray coatings. J Miner Mater Charact Eng. 11(06), 569 (2012)

    Google Scholar 

  19. Herman, H., Sampath, S., McCune, R.: Thermal spray: current status and future trends. MRS Bull. 25(07), 17–25 (2000)

    Article  Google Scholar 

  20. Chatha, S.S., Sidhu, H.S., Sidhu, B.S.: High-temperature behavior of a NiCr-coated T91 boiler steel in the platen superheater of coal-fired boiler. J Therm Spray Technol. 22(5), 838–847 (2013)

    Article  Google Scholar 

  21. Goyal, R., Sidhu, B.S. and Chawla, V.: Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel. Int J Adv Manuf Technol. 92(9–12), 3225–3235 (2017)

  22. Lim, D.-S., You, D.-H., Choi, H.-J., Lim, S.-H., Jang, H.: Effect of CNT distribution on tribological behavior of alumina–CNT composites. Wear. 259(1), 539–544 (2005)

    Article  Google Scholar 

  23. Balani, K., Zhang, T., Karakoti, A., Li, W., Seal, S., Agarwal, A.: In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating. Acta Mater. 56(3), 571–579 (2008)

    Article  Google Scholar 

  24. Laha, T., Agarwal, A.: Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite. Mater Sci Eng A. 480(1), 323–332 (2008)

    Article  Google Scholar 

  25. Balani, K., Agarwal, A.: Process map for plasma sprayed aluminum oxide—carbon nanotube nanocomposite coatings. Met Finish. 106(10), 45–51 (2008)

    Article  Google Scholar 

  26. Keshri, A.K., Agarwal, A.: Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: a comparison between experiments and simulation. Surf Coat Technol. 206(2), 338–347 (2011)

    Article  Google Scholar 

  27. Feng, Y., Yuan, H.L., Zhang, M.: Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact. 55(3), 211–218 (2005)

    Article  Google Scholar 

  28. Edward Anand, E., Natarajan, S.: Effect of carbon nanotubes on corrosion and tribological properties of pulse-electrodeposited Co-W composite coatings. J Mater Eng Perform. 24(1), 128–135 (2015)

    Article  Google Scholar 

  29. Portinha, A., Teixeira, V., Carneiro, J., Martins, J., Costa, M., Vassen, R., et al.: Characterization of thermal barrier coatings with a gradient in porosity. Surf Coat Technol. 195(2), 245–251 (2005)

    Article  Google Scholar 

  30. Jasim, K.M.: Laser sealing of zirconia–yttria–alumina plasma sprayed coating. J King Saud Univ Eng Sci. 25(1), 11–20 (2013)

    Google Scholar 

  31. Silva, P.R., Almeida, V.O., Machado, G.B., Benvenutti, E.V., Costa, T.M., Gallas, M.r.R.: Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol–gel method. Langmuir. 28(2), 1447–1452 (2011)

    Article  Google Scholar 

  32. Hvizdoš, P., Puchý, V., Duszová, A., and Dusza, J.: Carbon nanofibers reinforced ceramic matrix composites. In: Nanofibers, ed: InTech Open Access Publishers Rijeka, pp. 241–266 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushdeep Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, K., Singh, H. & Bhatia, R. Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating. J Aust Ceram Soc 55, 315–322 (2019). https://doi.org/10.1007/s41779-018-0237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0237-9

Keywords

Navigation