Skip to main content

Advertisement

Log in

Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Mg plays an important role in the human skeletal system as it stimulates the bone formation and reduces bone resorption. Magnesium has been substituted into SiO2–Na2O–CaO–P2O5 bioactive glass. In the present work, the bioactive glasses were designed to enhance bioactivity. Bioactivity of these glasses was assessed by the immersion of the samples in simulated body fluid (SBF) for different time periods. The formation of hydroxy carbonate apatite (HCA) layer was confirmed by scanning electron microscopy, X-ray diffractometry, and FTIR spectrometry which had shown the HCA layer formation and growth. The formation of HCA layer was found to increase on the surface of the SBF immersed bioactive glasses with increasing magnesia contents in the glass. In vitro cell culture investigations such as viability, proliferation, and cell attachment were studied using human osteosarcoma U2-OS cell lines. The in vitro results of new magnesium containing bioactive glasses had shown improved bioactivity as well as better biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cao, W., Hench, L.L.: Bioactive materials. Ceram Int. 22(6), 493–507 (1996)

    Article  CAS  Google Scholar 

  2. Kokubo, T., Ito, S.: Ca , P-rich layer formed on high-strength bioactive. J Biomed Mater Res. 24, 331–343 (1990)

    Article  CAS  Google Scholar 

  3. Hench, L.L.: Bioceramics. J Am Ceram Soc. 81(7), 1705–1728 (2005)

    Article  Google Scholar 

  4. Hench, L.L.: The story of Bioglass®. J Mater Sci Mater Med. 17(11), 967–978 (2006)

    Article  CAS  Google Scholar 

  5. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 55(2), 151–157 (2001)

    Article  CAS  Google Scholar 

  6. Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science (80-. ). 295(5557), 1014–1017 (2002)

    Article  CAS  Google Scholar 

  7. Nosouhian, S., Razavi, M., Jafari-pozve, N., Rismanchian, M.: “Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study),” Indian. J Dent Res. 26(4), 366 (2015)

    Google Scholar 

  8. Oonishi, H., Hench, L.L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., Iwaki, H.: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 44(1), 31–43 (1999)

    Article  CAS  Google Scholar 

  9. Mistry, S., Datta, S., Kundu, D., Basu, D.: Effects of bioactive glass, hydroxyapatite and bioactive glass—hydroxyapatite composite graft particles in the treatment of infrabony defects. J Indian Soc Periodontol. 16(2), 241–246 (2012)

    Article  Google Scholar 

  10. Diba, M., Tapia, F., Boccaccini, A.R., Strobel, L.A.: Magnesium-containing bioactive glasses for biomedical applications. Int J Appl Glas Sci. 3(3), 221–253 (2012)

    Article  CAS  Google Scholar 

  11. Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M.: Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 29(1), 335–340 (2009)

    Article  CAS  Google Scholar 

  12. Karakassides, M.A., Saranti, A., Koutselas, I.: Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids. 347(1–3), 69–79 (2004)

    Article  CAS  Google Scholar 

  13. Zhao, Y., Song, M., Liu, J.: Characteristics of bioactive glass coatings obtained by pulsed laser deposition. Surf Interface Anal. 40(11), 1463–1468 (2008)

    Article  CAS  Google Scholar 

  14. Soulié, J., Nedelec, J.M., Jallot, E.: Influence of Mg doping on the early steps of physico-chemical reactivity of sol-gel derived bioactive glasses in biological medium. Phys Chem Chem Phys. 11(44), 10473–10483 (2009)

    Article  CAS  Google Scholar 

  15. Ma, J., Chen, C.Z., Wang, D.G., Jiao, Y., Shi, J.Z.: Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surfaces B Biointerfaces. 81(1), 87–95 (2010)

    Article  CAS  Google Scholar 

  16. Ma, J., Chen, C.Z., Wang, D.G., Meng, X.G., Shi, J.Z.: In vitro degradability and bioactivity of mesoporous CaO-MgO-P2O5-SiO2 glasses synthesized by sol-gel method. J Sol-Gel Sci Technol. 54(1), 69–76 (2010)

    Article  CAS  Google Scholar 

  17. Verné, E., Bretcanu, O., Balagna, C., Bianchi, C.L., Cannas, M., Gatti, S., Vitale-Brovarone, C.: Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J Mater Sci Mater Med. 20(1), 75–87 (2009)

    Article  CAS  Google Scholar 

  18. Arepalli, S.K., Tripathi, H., Vyas, V.K., Jain, S., Suman, S.K., Pyare, R., Singh, S.P.: Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater Sci Eng C. 49, 549–559 (2015)

    Article  CAS  Google Scholar 

  19. Arepalli, S.K., Tripathi, H., Hira, S.K., Manna, P.P., Pyare, R., Singh, S.P.: Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater Sci Eng C. 69, 108–116 (2016)

    Article  CAS  Google Scholar 

  20. O’Donnell, M.D., Hill, R.G.: Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 6(7), 2382–2385 (2010)

    Article  CAS  Google Scholar 

  21. Queiroz, C.M., Agathopoulos, S., Frade, J.R., Fernandes, M.H.V.: Network connectivity and bio-mineralization of 0.45SiO2–(0.45-x)MgO–xK2O–0.1(3CaO:P2O5) Glasses. Mater Sci Forum. 455–456, 383–387 (2004)

    Article  Google Scholar 

  22. Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., Sousa, D.M., Granja, P.L., et al.: Understanding the composition–structure–bioactivity relationships in diopside (CaO·MgO·2SiO2)–tricalcium phosphate (3CaO·P2O5) glass system. Acta Biomater. 15, 210–226 (2015)

    Article  CAS  Google Scholar 

  23. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15), 2907–2915 (2006)

    Article  CAS  Google Scholar 

  24. Thomas, T.P., Majoros, I.J., Kotlyar, A., Kukowska-Latallo, J.F., Bielinska, A., Myc, A., Baker, J.R.: Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem. 48(11), 3729–3735 (2005)

    Article  CAS  Google Scholar 

  25. Hira, S.K., Mishra, A.K., Ray, B., Manna, P.P.: Targeted delivery of doxorubicin-loaded poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) micelles enhances antitumor effect in lymphoma. PLoS One. 9(4), e94309 (2014)

    Article  CAS  Google Scholar 

  26. Hench, L.L.: Bioceramics: from concept to clinic. J Am Ceram Soc. 74(7), 1487–1510 (1991)

    Article  CAS  Google Scholar 

  27. Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Rebelo, A.H.S., Ferreira, J.M.F.: Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. Acta Biomater. 3(2), 255–262 (2007)

    Article  CAS  Google Scholar 

  28. Paul, A.: Chemistry of Glasses, 1st edn, pp. 116–135. Chapman and Hall, London (1982)

    Book  Google Scholar 

  29. C.R. Das.: Ph.D Thesis, University of Sheffield, UK, 1963

  30. Boksay, Z., Bouquet, G.: The pH dependence and electrochemical interpretation of the dissolution rate of a silicate glass network. Phys Chem Glasses. 21(3), 110–113 (1980)

    CAS  Google Scholar 

  31. Varshneya, A.K.: Fundamentals of Inorganic Glasses, 2nd edn, pp. 467–470. Society of Glass Technology, Sheffield (2006)

    Google Scholar 

  32. Silver, I.A., Deas, J., Erecińska, M.: Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials. 22(2), 175–185 (2001)

    Article  CAS  Google Scholar 

  33. Goel, A., Rajagopal, R.R., Ferreira, J.M.F.: Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses. Acta Biomater. 7(11), 4071–4080 (2011)

    Article  CAS  Google Scholar 

  34. Lee, J.D.: Concise Inorganic Chemistry, 4th edn, p. 330. Chapman and Hall, London (1991)

    Google Scholar 

  35. Tulyaganov, D.U., Makhkamov, M.E., Urazbaev, A., Goel, A., Ferreira, J.M.F.: Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int. 39(3), 2519–2526 (2013)

    Article  CAS  Google Scholar 

  36. Cerruti, M., Greenspan, D., Powers, K.: Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials. 26(14), 1665–1674 (2005)

    Article  CAS  Google Scholar 

  37. Al-Noaman, A., Rawlinson, S.C.F.F., Hill, R.G.: The role of MgO on thermal properties , structure and bioactivity of bioactive glass coating for dental implants. J Non-Cryst Solids. 358(22), 3019–3027 (2012)

    Article  CAS  Google Scholar 

  38. Fujibayashi, S.: A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials. 24(8), 1349–1356 (2003)

    Article  CAS  Google Scholar 

  39. Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids. 356(44–49), 2546–2551 (2010 Oct 1)

    Article  CAS  Google Scholar 

  40. Romeis, S., Hoppe, A., Eisermann, C., Schneider, N., Boccaccini, A.R., Schmidt, J., Peukert, W.: Enhancing in vitro bioactivity of melt-derived 45S5 bioglass® by comminution in a stirred media mill. J Am Ceram Soc. 97(1), 150–156 (2014)

    Article  CAS  Google Scholar 

  41. Tulyaganov, D.U., Agathopoulos, S., Valerio, P., Balamurugan, A., Saranti, A., Karakassides, M.A., Ferreira, J.M.: Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med. 22(2), 217–227 (2011)

    Article  CAS  Google Scholar 

  42. Gaafar, M.S., Marzouk, S.Y., Zayed, H.A., Soliman, L.I., El-Deen, A.S.: Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Curr Appl Phys. 13(1), 152–158 (2013)

    Article  Google Scholar 

  43. Saboori, A., Sheikhi, M., Moztarzadeh, F., Rabiee, M., Hesaraki, S., Tahriri, M., Nezafati, N.: Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram. 108(3), 155–161 (2009)

    Article  CAS  Google Scholar 

  44. Watts, S.J., Hill, R.G., O’Donnell, M.D., Law, R.V.: Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids. 356(9–10), 517–524 (2010)

    Article  CAS  Google Scholar 

  45. Ducheyne, P., Qiu, Q.: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 20(23–24), 2287–2303 (1999)

    Article  CAS  Google Scholar 

  46. Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res - Part A. 102(1), 254–274 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Head of the Department of Ceramic Engineering, IIT (BHU) and the honorable Director, Indian Institute of Technology (BHU) Varanasi, India for providing the necessary facilities for the present research work. The author, Sampath Kumar Arepalli, is also very much grateful to the University Grants Commission, New Delhi, India (F.14-2(SC)/2010(SA-III)) for providing Rajiv Gandhi National Fellowship for this research work. The authors are thankful to central instrument facility centre (CIFC), IIT(BHU), Varanasi, India for providing the SEM and EDS facilities for this research work.

Funding

The present work was supported by the grant from the Department of Biotechnology (DBT), New Delhi, India, Nos. BT/PR11490/BRB/10/675/2008 (PPM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sampath Kumar Arepalli or S. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arepalli, S.K., Tripathi, H., Manna, P.P. et al. Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses. J Aust Ceram Soc 55, 145–155 (2019). https://doi.org/10.1007/s41779-018-0220-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0220-5

Keywords

Navigation