Skip to main content
Log in

Influence of heating rate and mechanical activation on the reaction between kaolin and aluminium powder

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, the effect of heating rate and mechanical activation on the reaction of kaolin and aluminium powder was investigated. A batch comprised of 89.5 wt% kaolin and 10.5 wt% aluminium powders was mixed and milled in a planetary ball-mill for 1, 5, 10, 20 and 40 h. The mixture powders were heat treated with a heating rate of 5, 10, 15, 20, 30 and 40 °C/min, respectively. After milling for 20 and 40 h, the results showed the formation of free silicon, quartz and nacrite (Al2Si2(OH)4) at room temperature. The kaolinite dehydroxylation, aluminium oxidation and the θ- to α-Al2O3 transformations are highly affected by heating rate and mechanical activation. As compared with the smallest heating rate, the mixtures heated with faster heating rate show the disappearance of the peak corresponding to the oxidation of aluminium and the appearance of a second peak corresponding to the formation of α-Al2O3. The intensity of the last peak increases with increasing of the heating rate and milled at lower milling time. The effects of heating rate in the reaction of kaolin and aluminium powder are attributed to the amorphization of kaolinite, the diffusion of Al3+ to form an amorphous alumina layer on the particle surface and the generation of microcracks at the particle surface of aluminium powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai, J.: Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and α-Al2O3. Ceram. Int. 36(2), 673–678 (2010)

    Article  Google Scholar 

  2. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—a review. J. Eur. Ceram. Soc. 28(2), 329–344 (2008)

    Article  Google Scholar 

  3. Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Int. 42(11), 12937–11294 (2016)

    Article  Google Scholar 

  4. Romero, M., Pérez, J.M.: Relation between the microstructure and technological properties of porcelain stoneware. A review. Mater. Constr. 65(320), e065 (2015)

    Article  Google Scholar 

  5. Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., Zhang, H.: Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceram. Int. 42(10), 12414–12421 (2016)

    Article  Google Scholar 

  6. Guo, H., Ye, F., Li, W., Song, X., Xie, G.: Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram. Int. 41(10), 14645–14651 (2015)

    Article  Google Scholar 

  7. Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomao, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41(8), 9443–9454 (2015)

    Article  Google Scholar 

  8. Ganesh, I., Ferreira, J.M.F.: Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram. Int. 35(5), 2007–2015 (2009)

    Article  Google Scholar 

  9. Viswabaskaran, V., Gnanam, F.D., Balasubramanian, M.: Mullitization behaviour of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)

    Article  Google Scholar 

  10. Liu, Y.F., Liu, X.Q., Tao, S.W., Meng, G.Y., Sorensen, O.T.: Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram. Int. 28(5), 479–486 (2002)

    Article  Google Scholar 

  11. Esharghawi, A., Penot, C., Nardou, F.: Contribution to porous mullite synthesis from clays by adding Al and Mg powders. J. Eur. Ceram. Soc. 29(1), 31–38 (2009)

    Article  Google Scholar 

  12. Chen, Y.F., Wang, M.C., Hon, M.H.: Transformation kinetics for mullite in kaolin-Al2O3 ceramics. J. Mater. Res. 18(6), 1355–1362 (2003)

    Article  Google Scholar 

  13. Sahnoune, F., Chegaar, M., Saheb, N., Goeuriot, P., Valdivieso, F.: Algerian kaolinite used for mullite formation. Appl. Clay Sci. 38(3–4), 304–310 (2008)

    Article  Google Scholar 

  14. Chen, Y.F., Chang, Y.H., Wang, M.C., Hon, M.H.: Effects of Al2O3 addition on the phases, flow characteristics and morphology of the porous kaolin ceramics. Mater. Sci. Eng. A. 373, 221–228 (2004)

    Article  Google Scholar 

  15. Tezuka, N., Low, I.M., Davies, I.J., Prior, M., Studer, A.: In situ neutron diffraction investigation on the phase transformation sequence of kaolinite and halloysite to mullite. Physica B. 385-386(1), 555–557 (2006)

    Article  Google Scholar 

  16. Vijayan, C., Soundararajan, N., Chandramohan, R., Ramaswamy, S., Gnanadurai, P.: The effect of heating rate on the phase transition and crystallization kinetics of Ag2Se0.2Te0.8 alloy. J. Therm. Anal. Calorim. 119(1), 91–97 (2015)

    Article  Google Scholar 

  17. Soifer, L., Korin, E.: Effect of heating rate on crystallization kinetics of amorphous Al91La5Ni4 alloys by DSC. J. Therm. Anal. Calorim. 56(1), 437–446 (1999)

    Article  Google Scholar 

  18. Katoh, K., Ito, S., Kawaguchi, S., Higashi, E., Nakano, K., Ogata, Y., Wada, Y.: Effect of heating rate on the thermal behavior of nitrocellulose. J. Therm. Anal. Calorim. 100(1), 303–308 (2010)

    Article  Google Scholar 

  19. Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int. 42(10), 12185–12193 (2016)

    Article  Google Scholar 

  20. Welham, N.J., Berbenni, V., Chapman, P.G.: Increased chemisorption onto activated carbon after ball-milling. Carbon. 40(13), 2307–2315 (2002)

    Article  Google Scholar 

  21. Zyryanov, V.V.: Ultrafast mechanochemical synthesis of mixed oxides. Inorg. Mater. 41(4), 378–392 (2005)

    Article  Google Scholar 

  22. Tamborenea, S., Mazzoni, A.D., Aglietti, E.F.: Mechanochemical activation of minerals on the cordierite synthesis. Thermochim. Acta. 411(2), 219–224 (2004)

    Article  Google Scholar 

  23. Neto, J.B.R., Moreno, R.: Effect of mechanical activation on the rheology and casting performance of kaolin/talc/alumina suspensions for manufacturing dense cordierite bodies. Appl. Clay Sci. 38(3–4), 209–218 (2008)

    Article  Google Scholar 

  24. Boldyrev, V.V.: Mechanochemistry and mechanical activation of solids. Solid State Ionics. 63-65, 537–543 (1993)

    Article  Google Scholar 

  25. Chen, L., Ye, G., Xu, D., Zhu, L., Lu, Z., Dong, L., Liu, Y.: Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Mater. Lett. 85(15), 91–94 (2012)

    Article  Google Scholar 

  26. Behmanesh, N., Heshmati-Manesh, S., Ataie, A.: Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J. Alloys Compd. 450(1–2), 421–425 (2008)

    Article  Google Scholar 

  27. Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Anisotropic grain growth of mullite in high-energy ball milled powders doped with transition metal oxides. J. Eur. Ceram. Soc. 23(13), 2247–2256 (2003)

    Article  Google Scholar 

  28. Aguilar-Santillan, J., Balmori-Ramirez, H., Bradt, R.C.: Dense mullite from attrition milled kyanite and α-alumina. J. Ceram. Process. Res. 8(1), 1–11 (2007)

    Google Scholar 

  29. Ebadzadeh, T.: Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite. J. Alloys Compd. 489(1), 125–129 (2010)

    Article  Google Scholar 

  30. Razavi-Tousi, S.S., Nematollahi, G.A., Ebadzadeh, T., Szpunar, J.A.: Modifying aluminum-water reaction to generate nano-sized aluminium hydroxide particles beside hydrogen. Powder Technol. 241, 166–173 (2013)

    Article  Google Scholar 

  31. Belhouchet, H., Hamidouche, M., Bouaouadja, N., Garnier, V., Fantozzi, G.: Kinetics of mullite formation in zircon and boehmite mixture. Ann. Chimie Sci. Materiaux. 35(1), 17–25 (2010)

    Article  Google Scholar 

  32. Elmas, E., Yildiz, K., Toplan, N., Toplan, H.O.: The non-isothermal kinetics of mullite formation in mechanically activated kaolinite-alumina ceramic system. J. Therm. Anal. Calorim. 108(3), 1201–1206 (2012)

    Article  Google Scholar 

  33. Shahverdi-Shahraki, K., Ghosh, T., Mahajan, K., Ajji, A., Carreau, P.J.: Effect of dry grinding on chemically modified kaolin. Appl. Clay Sci. 105-106, 100–106 (2015)

    Article  Google Scholar 

  34. Dellisanti, F., Valdrè, G.: The role of microstrain on the thermostructural behaviour of industrial kaolin deformed by ball milling at low mechanical load. Int. J. Miner. Process. 102-103, 69–77 (2012)

    Article  Google Scholar 

  35. Chen, C.Y., Lan, G.S., Tuan, W.H.: Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20(14–15), 2519–2525 (2000)

    Article  Google Scholar 

  36. Hasani, S., Panjepour, M., Shamania, M.: The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 78(3–4), 179–195 (2012)

    Article  Google Scholar 

  37. Issaoui, M., Limousy, L., Lebeau, B., Bouaziz, J., Fourati, M.: Design and characterization of flat membrane supports elaborated from kaolin and aluminum powders. C. R. Chimie. 19(4), 496–504 (2016)

    Article  Google Scholar 

  38. Suvaci, E., Simkovich, G., Messing, G.: The reaction-bonded aluminium oxide process: I, the effect of attrition milling on the solid-state oxidation of aluminium powder. J. Am. Ceram. Soc. 83(2), 299–305 (2000)

    Article  Google Scholar 

  39. Bafrooei, H.B., Ebadzadeh, T., Majidian, H.: Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceram. Int. 40(2), 2869–2876 (2014)

    Article  Google Scholar 

  40. Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 27(5), 517–522 (2001)

    Article  Google Scholar 

  41. Chen, L., Song, W.L., Lv, J., Wang, L., Xie, C.S.: Effect of heating rates on TG-DTA results of aluminum nanopowders prepared by laser heating evaporation. J. Therm. Anal. Calorim. 96(1), 141–145 (2009)

    Article  Google Scholar 

  42. Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81(8), 1995–2012 (1998)

    Article  Google Scholar 

  43. Dynys, F.W., Halloran, J.W.: Alpha alumina formation in alum-derived gamma alumina. J. Am. Ceram. Soc. 65(9), 442–448 (1982)

    Article  Google Scholar 

  44. Bossert, J., Fidancevska, E.: Effect of mechanical activation on the sintering of transition nanoscaled alumina. Sci. Sinter. 39(2), 117–125 (2007)

    Article  Google Scholar 

  45. Chen, G., Qi, H., Xing, W., Xu, N.: Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering. J. Membr. Sci. 318(1–2), 38–44 (2008)

    Article  Google Scholar 

  46. Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J., Caballero, A.: XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures. J. Eur. Ceram. Soc. 20(4), 403–412 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mrs. P. Díaz and Mrs. E. Sánchez for their technical assistance. K. Belhouchet wants to thank University Ferhat Abbas of Sétif 1 for providing financial support to carry out a scientific stay at the IETcc-CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Belhouchet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhouchet, H., Sahraoui, T., Belhouchet, K. et al. Influence of heating rate and mechanical activation on the reaction between kaolin and aluminium powder. J Aust Ceram Soc 55, 135–144 (2019). https://doi.org/10.1007/s41779-018-0219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0219-y

Keywords

Navigation