Skip to main content
Log in

Effect of sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite prepared by using amorphous SiO2 nanoparticles

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The effect of different sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite was investigated. In this study, a ZnO-Zn2SiO4 composite was prepared by encapsulated zinc nitrate hexahydrate with amorphous silica nanoparticles in deionized water. The amorphous silica nanoparticles were prepared by reacting sodium silicate with ethanol. Zinc nitrate was mixed with the obtained amorphous silica nanoparticles with the ratio of 2:1 and 1.25:1 for Zn:Si and subjected to the different sintering temperatures from 600 to 1000 °C. Field emission scanning electron microscope (FESEM) microstructure showed that samples exhibit spherical morphology up to 700 °C and dumbbell morphology above 800 °C sintering temperature. The formation of Zn2SiO4 crystal phase appears from 700 °C and onwards together with ZnO crystal phase. The gaining of sintering temperature has also raised the amount of Zn2SiO4 phase and band gap values of the ZnO-Zn2SiO4 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y., Zhang, Q.Y.: Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R. 70, 1–34 (2010)

    Article  Google Scholar 

  2. Yen, W.M., Shionoya, S., Yamamoto, H.: Phosphors Handbooks. CRC Press, New York (2007)

    Google Scholar 

  3. Takesue, M., Hayashi, H., Smith, R.L.: Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog Cryst Growth Charact Mater. 55, 98–124 (2009)

    Article  Google Scholar 

  4. Baccile, N., Babonneau, F., Thomas, B., Coradin, T.: Introducing ecodesign in silica sol-gel materials. J Mater Chem. 19(45), 8537–8559 (2009)

    Article  Google Scholar 

  5. Elimelech, H., Avnir, D.: Sodium-silicate route to submicrometer hybrid PEG@silica particles. Chem Mater. 20, 2224–2227 (2008)

    Article  Google Scholar 

  6. Wu, W., Cao, S., Yuan, X., Zhao, Z., Fang, L.: Sodium silicate route: fabricating high monodisperse hollow silica spheres by a facile method. J Porous Mater. 19, 913–919 (2012)

    Article  Google Scholar 

  7. Sundblom, A., Oliveira, C.L.P., Pedersen, J.S., Palmqvist, A.E.C.: Decoupling particle formation from intraparticle ordering in mesostructured silica colloids. Microporous Mesoporous Mater. 145(1–3), 59–64 (2011)

    Article  Google Scholar 

  8. Yun-yu, Z., Xiao-xuan, L., Zheng-xing, C.: Rapid synthesis of well-ordered mesoporous silica from sodium silicate. Powder Technol. 226, 239–245 (2012)

    Article  Google Scholar 

  9. Cheng, G., Liu, C.: Preparation of lamellar mesoporous silica microspheres via SDS templates. Mater Chem Phys. 77(2), 359–364 (2003)

    Article  Google Scholar 

  10. Buining, P., Liz-Marzan, L.M., Philipse, A.P.: A simple preparation of small, smooth silica spheres in a seed alcosol for stober synthesis. J Colloid Interface Sci. 179, 318–321 (1996)

    Article  Google Scholar 

  11. Godoi, R.H.M., Fernandes, L., Jafelicci Jr., M., Marques, R.C., Varanda, L.C., Davolos, M.R.: Investigation of the systems silica and silica containing chromium in alcohol medium. J. Non-Cryst Solids. 247, 141–145 (1999)

    Article  Google Scholar 

  12. Bahadur, H., Srivastava, A.K., Sharma, R.K., Chandra, S.: Morphologies of sol-gel derived thin films of ZnO using different precursor materials and their nanostructures. Nanoscale Res Lett. 2, 469–475 (2007)

    Article  Google Scholar 

  13. Singh, A.K., Viswanath, V., Janu, V.C.C.: Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J Lumin. 129, 874–878 (2009)

    Article  Google Scholar 

  14. Ramakrishna, P.V., Murthy, D.B.R.K., Sastry, D.L., Samatha, K.: Synthesis, structural and luminescence properties of Mn doped ZnO/Zn2SiO4 composite microphosphor. Spectrochim Acta A. 129, 274–279 (2014)

    Article  Google Scholar 

  15. Lin, C.C., Shen, P.: Sol-gel synthesis of zinc orthosilicate. J Non-Cryst Solids. 171, 281–289 (1994)

    Article  Google Scholar 

  16. Petrovykh, K.A., Rempel, A.A., Kortov, V.S., Buntov, E.A.: Sol-gel synthesis and photoluminescence of Zn2SiO4:Mn nanoparticles. Inorg Mater. 51(2), 152–157 (2015)

    Article  Google Scholar 

  17. El Ghoul, J., El Mir, L.: Sol-gel synthesis and luminescence of undoped and Mn-doped zinc orthosilicate phosphor nanocomposites. J Lumin. 148, 82–88 (2014)

    Article  Google Scholar 

  18. Taghavinia, N., Lerondel, G., Makino, H., Yamamoto, A., Yao, T., Kawazoe, Y., Goto, T.: Nanocrystalline Zn2SiO4:Mn2+ grown in oxidized porous silicon. Nanotechnology. 12, 547–551 (2001)

    Article  Google Scholar 

  19. Cannas, C., Mainas, M., Musinu, A., Piccaluga, G.: ZnO/SiO2 nanocomposites obtained by impregnation of mesoporous silica. Compos Sci Technol. 63(8), 1187–1191 (2003)

    Article  Google Scholar 

  20. Engku Ali, E.A.G., Matori, K.A., Saion, E., Sidek, H.A.A., Zaid, M.H.M., Alibe, I.M.: Effect of reaction time on structural and optical properties of porous SiO2 nanoparticles. Dig J Nanomater Biostruct. 12, 441–447 (2017)

    Google Scholar 

  21. Omri, K., Ghoul, J.E., Alyamani, A., Barthou, C., Mir, L.E.: Luminescence properties of green emission of SiO2/Zn2SiO4:Mn nanocomposite prepared by sol–gel method. Phys E Low-Dimensional Syst Nanostructures. 53, 48–54 (2013)

    Article  Google Scholar 

  22. Raevskaya, A.E., Panasiuk, Y.V., Stroyuk, O.L., Kuchmiy, S.Y., Dzhagan, V.M., Milekhin, A.G., Yeryukov, N.A., Sveshnikova, L.A., Rodyakina, E.E., Plyusnin, V.F., Zahn, D.R.T.: Spectral and luminescent properties of ZnO-SiO2 core-shell nanoparticles with size-selected ZnO cores. RSC Adv. 4(108), 63393–63401 (2014)

    Article  Google Scholar 

  23. Babu, K.S., Reddy, A.R., Reddy, K.V.: Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater Res Bull. 49, 537–543 (2014)

    Article  Google Scholar 

  24. Yang, Y., Kim, D.S., Knez, M., Scholz, R., Berger, A., Pippel, E., Hesse, D., Gosele, U., Zacharias, M.: Influence of temperature on evolution of coaxial ZnO/Al2O3 one-dimensional heterostructures: from core-shell nanowires to spinel nanotubes and porous nanowires. J Phys Chem C. 112, 4068–4074 (2008)

    Article  Google Scholar 

  25. Li, Z., Zhang, H., Fu, H.: Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates. J Lumin. 135, 79–83 (2013)

    Article  Google Scholar 

  26. Tomlins, G.W., Routbort, J.L., Mason, T.O.: Oxygen diffusion in single-crystal zinc oxide. J Am Ceram Soc. 81, 869–876 (1998)

    Article  Google Scholar 

  27. Ghoul, J.E., Mir, L.E.: Synthesis by sol–gel process, structural and luminescence of V and Mn doped α-Zn2SiO4. J Mater Sci Mater Electron. 26, 3550–3557 (2015)

    Article  Google Scholar 

  28. Carter, B., Norton, G.: Ceramic materials: science and engineering. Springer Science+Business Media, New York (2007)

    Google Scholar 

  29. El Mir, L., Amlouk, A., Barthou, C., Alaya, S.: Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 composite based on nanosized zinc oxide-confined silica aerogels. Phys B Condens Matter. 388, 412–417 (2007)

    Article  Google Scholar 

  30. Ramimoghadam, D., Hussein, M., Taufiq-Yap, Y.: The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int J Mol Sci. 13, 13275–13293 (2012)

    Article  Google Scholar 

  31. Podbršček, P., Dražić, G., Anžlovar, A., Orel, Z.C.: The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber. Mater Res Bull. 46, 2105–2111 (2011)

    Article  Google Scholar 

  32. Zaid, M.H.M., Matori, K.A., Aziz, S.A., Kamari, H.M., Zaidan, A.W., Fen, Y.W., Alibe, I.M.: Synthesis and characterization of low cost willemite based glass–ceramic for opto-electronic applications. J Mater Sci Mater Electron. 27, 11158–11167 (2016)

    Article  Google Scholar 

  33. Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi B. (2015). https://doi.org/10.1002/pssb.201552007

  34. Foo, K.L., Hashim, U., Muhammad, K., Voon, C.H.: Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett. (2014). https://doi.org/10.1186/1556-276X-9-429

  35. Kumar, S., Sahare, P.D.: Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt Commun. 285, 5210–5216 (2012)

    Article  Google Scholar 

  36. Singh, R.G., Singh, F., Mehra, R.M., Kanjilal, D., Agarwal, V.: Synthesis of nanocrystalline α-Zn2SiO4 at ZnO–porous silicon interface: phase transition study. Solid State Commun. 151, 701–703 (2011)

    Article  Google Scholar 

Download references

Funding

This study was funded by the Malaysian Ministry of Higher Education (MOHE), Universiti Malaysia Terengganu and Universiti Putra Malaysia through the Inisiatif Putra Berkumpulan (IPB) research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khamirul Amin Matori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engku Ali, E.A.G., Matori, K.A., Saion, E. et al. Effect of sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite prepared by using amorphous SiO2 nanoparticles. J Aust Ceram Soc 55, 115–122 (2019). https://doi.org/10.1007/s41779-018-0217-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0217-0

Keywords

Navigation