Advertisement

Characterization of europium oxychloride nanopowders codoped with Cu/Ni ions synthesized by solvothermal route: significant effect of post-annealing in hydrogen

  • A. A. Dakhel
Research
  • 17 Downloads

Abstract

Europium oxychloride nanopowders codoped with copper/nickel ions were synthesized by solvothermal route followed by a subsequent heat treatment. The present study focuses on determination the conditions required to create stable ferromagnetic (RT-FM) properties in EuOCl crystalline powder. For that purpose, nickel (Ni2+) ions were used as dopant. It was found that such doping could not create FM properties in EuOCl unless followed by hydrogenation. The presence of transition metal (TM) Cu2+ as impurity dopant ions assists to dissociate H2 molecules into H atoms. Moreover, dopant Cu2+ ions donate polarons (electrons) that develop the electronic medium (EMI) of the spin-spin (S.S) long-range interaction in the EuOCl crystalline lattice. Systematic structural, optical, and magnetic properties of pure and Cu/Ni-codoped EuOCl samples were investigated. Their variations with post-annealing treatment in different conditions (temperature and atmosphere) were also studied. The optical properties were studied by diffuse reflection spectroscopy (DRS) method. The magnetic measurements reveal that hydrogenated Cu/Ni-codoped EuOCl nanopowders have RT-FM properties with saturation magnetisation ~ 1.7 emu/g. The physical explanations and discussions were given in the framework of bound magnetic polarons (BMP) theory. Thus, EuOCl nanocrystalline powder could be used as a potential candidate for optical applications with tailored magnetic properties.

Keywords

Opto-magnetic properties EuOCl Ni-doped EuOCl Created novel ferromagnetism Hydrogen treatment 

References

  1. 1.
    Golovkova, S.I., Gurvich, A.M., Savikhina, T.I., Starick, D., Birman, T.A., Herzog, G., Katomina, R.V., Kra, G.: Luminescence properties of lanthanum oxyhalides activated with terbium. J. Appl. Spectrosc. 35, 1208–1212 (1981)CrossRefGoogle Scholar
  2. 2.
    Marsal, A., Rossinyol, E., Bimbela, F., Tellez, C., Coronas, J., Cornet, A.: Characterisation of LaOCl sensing materials using CO2-TPD, XRD TEM and XPS. Sensors Actuators BChem. 109, 38–43 (2005)CrossRefGoogle Scholar
  3. 3.
    Maslen, E., Streltsov, V., Streltsova, N.: Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr. 51, 929–939 (1996)CrossRefGoogle Scholar
  4. 4.
    Kong, Q., Wang, J., Dong, X., Wensheng, Y., Liu, G.: Synthesis and luminescence properties of Yb3+- Er3+ co-doped LaOCl nanostructures. J. Mater. Sci. 49, 2919–2931 (2014)CrossRefGoogle Scholar
  5. 5.
    Kim, D., Park, S., Kim, S., Kang, S.-G., Park, J.-C.: Blueemitting Eu2+-activated LaOX (X=Cl, Br, and I) materials crystal field effect. Inorg. Chem. 53, 11966–11973 (2014)CrossRefGoogle Scholar
  6. 6.
    Holsa, J., Lahtinen, M., Lastusaari, M., Valkonen, J., Viljanen, J.: Stability of rare-earth oxychloride phases: bond valence study. J. Solid State Chem. 165, 48–55 (2002)CrossRefGoogle Scholar
  7. 7.
    Holsa, J., Lamminmaki, R.-J., Lastusaari, M., Porcher, P., Saez-Puche, R.: Simulation of the paramagnetic susceptibility in rare earth oxychlorides. J. Alloys Compd. 303–304, 498–504 (2000)CrossRefGoogle Scholar
  8. 8.
    Aitasalo, T., Hölsä, J., Lastusaari, M., Legendziewicz, J., Lehto, L., Lindén, J., Marysko, M.: Structural, magnetic and spectroscopic investigations of europium oxychloride. EuOCl. J. Alloys Compds. 380, 296–302 (2004)CrossRefGoogle Scholar
  9. 9.
    Matas, S., Mihalik, M., Klemke, B., Sokolowski, A.: Low temperature properties of selected Kramers rare earth oxychlorides, EPJ Web of Conferences 40, 11005/1–4 (2013).  https://doi.org/10.1051/epjconf/20134011005
  10. 10.
    Kittel, C.: Introduction to solid state physics, 7th edn. Wiley, New York (1996)Google Scholar
  11. 11.
    Kaminski, A., Sarma, S.D.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)CrossRefGoogle Scholar
  12. 12.
    Wolff, P.A., Bhatt, R.N., Durst, A.C.J.: Polaron-polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196–5198 (1996)CrossRefGoogle Scholar
  13. 13.
    Lewis, E.A., Le, D., Murphy, C.J., Jewell, A.D., Mattera, M.F.G., Liriano, M.L., Rahman, T.S., Sykes, E., Charles, H.: Dissociative hydrogen adsorption on close-packed cobalt nanoparticle surfaces. J. Phys. Chem. C. 116, 25868–25873 (2012)CrossRefGoogle Scholar
  14. 14.
    Pozzo, M., Alfe, D.: Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces. Int. J. Hydrog. Energy. 34, 1922–1930 (2009)CrossRefGoogle Scholar
  15. 15.
    Schlapbach, L.: Magnetic properties of LaNi5 and their variation with hydrogen absorption and desorption. J. Phys. F: Metal Phys.. 10, 2477–2290 (1980)CrossRefGoogle Scholar
  16. 16.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 32, 751–767 (1976)CrossRefGoogle Scholar
  17. 17.
    McCusker, L.B., Von Dreele, R.B., Cox, D.E., Loueer, D., Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)CrossRefGoogle Scholar
  18. 18.
    Sun, W., Jia, Y., Ma, T., Li, D., Li, H., Jiang, L., Zhang, S., Fu, J., Pang, R., Li, C.: Synthesis and photoluminescence properties of a red-emitting phosphor Sr9Mg1.5(PO4)7:Eu3+. ChemistrySelect. 3, 462–468 (2016)CrossRefGoogle Scholar
  19. 19.
    dos S. Rezende, M.V., Amaral, J.B., Valerio, M.E.G., Jackson, R.A.: Optical properties of Pr and Eu-doped SrAl12O19: a theoretical study. Opt. Mater. 48, 105–109 (2015)CrossRefGoogle Scholar
  20. 20.
    Chiu, Z.-W., Hsiao, Y.-J., Fang, T.-H., Ji, L.-W.: Photoluminescence and optoelectronics characteristics of Eu-doped InBO3 nanocrystals. Int. J. Electrochem. Sci. 10, 2391–2399 (2015)Google Scholar
  21. 21.
    Morales, A.E., Mora, E.S., Pal, U.: Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. S. 53, 18–22 (2007)Google Scholar
  22. 22.
    Crangle, J., Goodman, G.M.: The magnetization of pure iron and nickel. Proc. R. Soc. Lond. A. 321, 477–491 (1971)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain

Personalised recommendations