Skip to main content
Log in

Hydrogel-assisted low-temperature synthesis of calcium borate nanoparticles

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In recent years, synthesis of inorganic/organic hybrid nanocomposites with the aid of biomaterials has gained much attention due to their biocompatibility, inexpensiveness, and versatility. In this paper, we utilized a novel approach for synthesis of calcium borate nanoparticles at ambient temperature based on the diffusion of calcium and borate ions in gelatin hydrogel. Different properties of particles were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and X-ray diffraction (XRD). FTIR spectra of particles showed gelatin inclusion in the particle indicative by CH2 stretching, CH2 bending, and gelatin functional group vibrations. The electrostatic interactions between gelatin macromolecules and calcium borate crystals were also proved by HyperChem 8 modeling software. SEM illustrated that the particle morphology depended on the gelatin pH. XRD revealed the presence of crystalline CaB2O4 phase in the nanocomposite particles. Our research stated that gelatin is a useful biopolymer for synthesis and precipitation of calcium borate at ambient temperature. Hence, we propose our particles as promising materials for use in different engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burgener, M., Putzeys, T., Parvinzadeh Gashti, M., Busch, S., Aboulfadl, H., Wubbenhorst, M., Kniep, R., Hulliger, J.: Polar Nature of Biomimetic Fluorapatite/Gelatin Composites: A Comparison of Bipolar Objects and the Polar State of Natural Tissue. Biomacromolecules. 16, 2814 (2015)

    Article  CAS  Google Scholar 

  2. Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31, 1465 (2010)

    Article  CAS  Google Scholar 

  3. Meldrum, F.C., Cölfen, H.: Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332 (2008)

    Article  CAS  Google Scholar 

  4. Parvinzadeh Gashti, M., Hegemann, D., Stir, M., Hulliger, J.: Thin Film Plasma Functionalization of Polyethylene Terephthalate to Induce Bone-Like Hydroxyapatite Nanocrystals. Plasma Process. Polym. 11, 37 (2014)

    Article  CAS  Google Scholar 

  5. Schweizer, S., Taubert, A.: Polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution. Macromol. Biosci. 7, 1085 (2007)

    Article  CAS  Google Scholar 

  6. Gorna, K., Muñoz-Espí, R., Gröhn, F., Wegner, G.: Bioinspired mineralization of inorganics from aqueous media controlled by synthetic polymers. Macromol. Biosci. 7, 163 (2007)

    Article  CAS  Google Scholar 

  7. Parvinzadeh Gashti, M., Bourquin, M., Stir, M., Hulliger, J.: Glutamic acid inducing kidney stone biomimicry by a brushite/gelatin composite. J. Mater. Chem. B. 1, 1501 (2013)

    Article  Google Scholar 

  8. Parvinzadeh Gashti, M., Burgener, M., Stir, M., Hulliger, J.: Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties. J. Colloid Interface Sci. 431, 149 (2014)

    Article  Google Scholar 

  9. Parvinzadeh Gashti, M., Bourquin, M., Stir, M., Hulliger, J.: Mineralization of Calcium Phosphate Crystals in Starch Template Inducing a Brushite Kidney Stone Biomimetic Composite, Cryst. Cryst. Growth Des. 13, 2166 (2013)

    Article  CAS  Google Scholar 

  10. Parvinzadeh Gashti, M., Stir, M., Hulliger, J.: Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloids Surf. B. 110, 426 (2013)

    Article  Google Scholar 

  11. Schubert, D.M.: Borates in industrial use, structure and bonding, p. 5. Springer-Verlag, Heidelberg (2003)

    Google Scholar 

  12. Lavın, V., Rodrıguez-Mendoza, U.R., Martın, I.R., Rodrıguez, V.D.: Optical spectroscopy analysis of the Eu3+ ions local structure in calcium diborate glasses. J. Non-Cryst. Solid. 319, 200 (2003)

  13. Jia, W.T., Zhang, X., Luo, S.H., Liu, X., Huang, W.H., Rahaman, M.N., Day, D.E., Zhang, C.Q., Xie, Z.P., Wang, J.Q.: Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 6, 812 (2010)

    Article  CAS  Google Scholar 

  14. Miura, K., Kimura, N., Suzuki, H., Miyashita, Y., Nishio, Y.: Thermal and Viscoelastic Properties of Alginate/Poly(vinyl alcohol) Blends Cross-Linked with Calcium Tetraborate, Carbohydr. Carbohydr. Polym. 39, 139 (1999)

    Article  CAS  Google Scholar 

  15. Ishii, T., Kokaku, H., Nagai, A., Nishita, T., Kakimoto, M.: Calcium borate flame retardation system for epoxy molding compounds. Polym. Eng. Sci. 46, 799 (2006)

    Article  CAS  Google Scholar 

  16. Jia, Z., Pang, X., Li, H., Ni, J., Shao, X.: Synthesis and wear behavior of oleic acid capped calcium borate/graphene oxide composites. Tribol. Int. 90, 240 (2015)

    Article  CAS  Google Scholar 

  17. Zhu, W., Zhang, X., Wang, X., Zhang, H., Zhang, Q., Xiang, L.: Short belt-like Ca2B2O5· H2O nanostructures: Hydrothermal formation, FT-IR, thermal decomposition, and optical properties. J. Cryst. Growth. 332, 81 (2011)

    Article  CAS  Google Scholar 

  18. Erfani Haghiri, M., Saion, E., Soltani, N., wan Abdullah, W.S., Navasery, M., Hashim, M.: Thermoluminescence characteristics of copper activated calcium borate nanocrystals (CaB4O7: Cu). J. Lumin. 141, 177 (2013)

    Article  CAS  Google Scholar 

  19. Erfani Haghiri, M., Saion, E., Soltani, N., wan Abdullah, W.S., Navasery, M., Rezaee Ebrahim Saraee, K., Deyhimi, N.: Thermoluminescent dosimetry properties of double doped calcium tetraborate (CaB4O7: Cu–Mn) nanophosphor exposed to gamma radiation. J. Alloys Comp. 582, 392 (2014)

    Article  CAS  Google Scholar 

  20. Rojas, S.S., Yukimitu, K., de Camargo, A.S.S., Nunes, L.A.O., Hernandes, A.C.: Undoped and calcium doped borate glass system for thermoluminescent dosimeter J. Non-Cryst. Solid. 352, 3608 (2006)

    Article  CAS  Google Scholar 

  21. Manupriya, Thind, K.S., Sharma, G., Rajendran, V., Singh, K., Gayathri Devi, A.V., Aravindan, S.: Structural and acoustic investigations of calcium borate glasses. Phys. Status Solidi (a). 203, 2356 (2006)

    Article  CAS  Google Scholar 

  22. Rojas, S.S., Yukimitu, K., Hernandes, A.C.: Dosimetric properties of UV irradiated calcium co-doped borate glass–ceramic Nucl. Instr. Meth. Phys. Res. B. 266, 653 (2008)

    Article  CAS  Google Scholar 

  23. Manupriya, Thind, K.S., Singh, K., Kumar, V., Sharma, G., Singh, D.P., Singh, D.: Compositional dependence of in-vitro bioactivity in sodium calcium borate glasses J. Phys. Chem. Solids. 70, 1137 (2009)

    Article  CAS  Google Scholar 

  24. Singh, K., Bala, I., Kumar, V.: Structural optical and bioactive properties of calcium borosilicate glasses. Ceram. Int. 35, 3401 (2009)

    Article  CAS  Google Scholar 

  25. Abdelghany, A.M.: Novel method for early investigation of bioactivity in different borate bio-glasses Spectrochim. Acta Part A. 100, 120 (2013)

    Article  CAS  Google Scholar 

  26. Wu, Y., Liu, J., Fu, P., Wang, J., Zhou, H., Wang, G., Chen, C.: A New Lanthanum and Calcium Borate La2CaB10O19 Chem. Mater. 13, 753 (2001)

    Article  CAS  Google Scholar 

  27. Chen, X., Li, M., Chang, X., Zang, H., Xiao, W.: Synthesis and crystal structure of a new calcium borate, CaB6O10. J. Alloy. Comp. 464, 332 (2008)

    Article  CAS  Google Scholar 

  28. Huang, Y., Han, S., Liu, S., Wang, Y., Li, J.: Preparation and tribological properties of surface-modified calcium borate nanoparticles as additive in lubricating oil. Ind. Lubr. Tribol. 66, 143 (2014)

    Article  Google Scholar 

  29. Gioffrè, M., Torricelli, P., Panzavolta, S., Rubini, K., Bigi, A.: Chitosan and gelatin as engineered dressing for wound repair. J. Bioact. Compat. Polym. 27, 67 (2012)

    Article  Google Scholar 

  30. Parvinzadeh Gashti, M., Stir, M., Hulliger, J.: Growth of strontium hydrogen phosphate/gelatin composites: a biomimetic approach. New J. Chem. 40, 5495 (2016)

    Article  Google Scholar 

  31. Parvinzadeh Gashti, M., Helali, M., Karimi, S.: Biomineralization-inspired green. synthesis of zinc phosphate-based nanosheets in gelatin hydrogel. Int. J. Appl. Ceram. Technol. 13, 1069 (2016)

    Article  CAS  Google Scholar 

  32. Chen, J.M., Kung, C.E., Feairheller, S.H., Brown, E.M.: An energetic evaluation of a “Smith” collagen microfibril model. J. Protein Chem. 10, 535 (1991)

    Article  CAS  Google Scholar 

  33. Tlatlik, H., Simon, P., Kawska, A., Zahn, D., Kniep, R.: Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem. Int. Ed. 45, 1905 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazeyar Parvinzadeh Gashti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashti, M.P., Shokri, A. Hydrogel-assisted low-temperature synthesis of calcium borate nanoparticles. J Aust Ceram Soc 54, 601–607 (2018). https://doi.org/10.1007/s41779-018-0188-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0188-1

Keywords

Navigation