Experiment and simulation method to investigate the flow within porous ceramic membrane

Research
  • 26 Downloads

Abstract

It is efficient to recover water and latent heat from flue gas by using a porous ceramic membrane. In this paper, an experimental and numerical simulation is used for studying the heat transfer and flow of fluid in the ceramic tube in a porous membrane. The experimental data shows that the inlet velocity of feed gas and porosity of membrane enhance the heat and mass transfer performance of membranes when the range of which is 0.65–2.87 m/s and 60–78% respectively. Based on the minimum entransy dissipation, the Lagrange multiplier method is used to deduce the optimal momentum equation, which is interpreted by user definition functions (UDF) of FLUENT 15.0. A numerical study is carried out by varying Reynolds number, thickness of condensate, and values of momentum loss in this paper. The results show that the mass flux of water recovery is 0.25 kg/m2.h when Re was in range of 2.17 × 102~1.13 × 103, thickness of condensation film (δ con ) is close to 0.02 mm, and membrane porosity (ф) is close to 70%.

Keywords

Ceramic membrane Water recovery Minimum entransy dissipation Numerical simulation and experiment 

Nomenclature

Notations

k

permeability (kg/m2.s)

h

convective heat transfer coefficient (W/m2.K)

p

pressure (Pa)

T

temperature (k)

v

volume (m3)

V

specific volume (m3/kg)

R

specific gas constant

r

radius (m)

q

heat flux (kJ/m2.s)

A

area (m2)

U

velocity (m/s)

Cp

specific isobaric heat capacity (kJ/kg.K)

l

length

M

mass flux (kg/m2.s)

a

Lagrange multiplier

b

Lagrange multiplier

C0

Lagrange constant

S

source term

Wp

momentum loss

W

original mass content (g)

t

time steps (s)

eh

entransy dissipation (W)

x

local x-coordinate

Greek letters

σ

surface tension (N/m)

λ

thermal conductivity (W/mk)

μ

dynamic viscosity (Pas)

ρ

density (kg/m3)

ε

thermal efficiency near wall

δ

thickness of fluid film (mm)

τ

thickness of the membrane (m)

υ

kinetic viscosity (m2/s)

ф

porosity of membrane

Subscripts

e

energy

mass

mass

vap

water vapor

sat

saturated state of flow

pore

the pores with the membrane

rec

water recovery

per

water permeability

k

critical state

wall

membrane wall

in

inlet of feed gas

v

velocity boundary layer

th

thermal boundary layer

con

condensate

b

bulk feed gas flow

Notes

Compliance with ethical standards

This article does not contain any studies performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bao, A., Wang, D., Lin, C.: Nanoporous membrane tube condensing heat transfer enhancement study. Int J Heat Mass Transf. 84, 456–462 (2015)CrossRefGoogle Scholar
  2. 2.
    Hu, H.W., Tang, G.H., Niu, D.: Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery. Sci. Rep. 6(1), 27274 (2016)CrossRefGoogle Scholar
  3. 3.
    Loimer, T.: Linearized description of the non-isothermal flow of a saturated vapor through a micro-porous membrane. J Membr Sci. 301(1–2), 107–117 (2007)CrossRefGoogle Scholar
  4. 4.
    Rezakazemi, M., et al.: Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation based on sorption-dependent system using neural network model. J. Membr. Sci. 66, 1–41 (2018)Google Scholar
  5. 5.
    Rezakazemi, M., et al.: Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science. Polym. Eng. Sci. 54, 215–226 (2014)CrossRefGoogle Scholar
  6. 6.
    Rezakazemi, M., et al.: CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem. Eng. J. 168, 1217–1226 (2011)CrossRefGoogle Scholar
  7. 7.
    Mojtaba Fasihi, M., Rezakazemi, M.: Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Math. Comput. Model. 56, 278–286 (2012)CrossRefGoogle Scholar
  8. 8.
    Rezakazemi, M., et al.: State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861 (2014)CrossRefGoogle Scholar
  9. 9.
    Behrang, A., et al.: A theoretical study on the permeability of tight media; effects of slippage and condensation. Fuel. 181, 610–617 (2016)CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Peng, X.F., Ye, P.: Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int. J. Heat Mass Transf. 51(5–6), 1003–1016 (2008)CrossRefGoogle Scholar
  11. 11.
    Caruso, G., Di Maio, D.V.: Heat and mass transfer analogy applied to condensation in the presence of noncondensable gases inside inclined tubes. Int. J. Heat Mass Transf. 68, 401–414 (2014)CrossRefGoogle Scholar
  12. 12.
    Yi, Q., et al.: Visualization study of the influence of non-condensable gas on steam condensation heat transfer. Appl. Therm. Eng. 106, 13–21 (2016)CrossRefGoogle Scholar
  13. 13.
    Chua, Y.T., et al.: Nanoporous organosilica membrane for water desalination: theoretical study on the water transport. J. Membr. Sci. 482, 56–66 (2015)CrossRefGoogle Scholar
  14. 14.
    Uchytil, P., Loimer, T.: Large mass flux differences for opposite flow directions of a condensable gas through an asymmetric porous membrane. J. Membr. Sci. 470, 451–457 (2014)CrossRefGoogle Scholar
  15. 15.
    Dehbi, A., Janasz, F., Bell, B.: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach. Nucl. Eng. Des. 258, 199–210 (2013)CrossRefGoogle Scholar
  16. 16.
    Fu, W., et al.: Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube. Nucl. Eng. Des. 297, 197–207 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, J.: CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers. Int. J. Heat. Mass Transf. 57(2), 708–721 (2013)CrossRefGoogle Scholar
  18. 18.
    Vyskocil, L., Schmid, J., Macek, J.: CFD simulation of air-steam flow with condensation. Nucl. Eng. Des. 279(SI), 147–157 (2014)CrossRefGoogle Scholar
  19. 19.
    Yang, M., et al.: Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour. Technol. 227, 102–111 (2017)CrossRefGoogle Scholar
  20. 20.
    Sadaghiani, A.K., Yildiz, M., Koşar, A.: Numerical modeling of convective heat transfer of thermally developing nanofluid flows in a horizontal microtube. Int. J. Therm. Sci. 109, 54–69 (2016)CrossRefGoogle Scholar
  21. 21.
    Han, C., et al.: Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube. Cryogenics. 78, 1–13 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, X.Y., Duan, L.Q., Zhang, X.D., et al.: Engineering Thermodynamics[M], pp. 79–82. China Machine Press, Beijing (2007)Google Scholar
  23. 23.
    Cheng, X., Zhang, Q., Liang, X.: Analyses of entransy dissipation, entropy generation and entransy–dissipation-based thermal resistance on heat exchanger optimization. Appl. Therm. Eng. 38, 31–39 (2012)CrossRefGoogle Scholar
  24. 24.
    Guo, Z., Zhu, H., Liang, X.: Entransy—a physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 50(13–14), 2545–2556 (2007)CrossRefGoogle Scholar
  25. 25.
    Jia, H., et al.: Convective heat transfer optimization based on minimum entransy dissipation in the circular tube. Int. J. Heat Mass Transf. 73, 124–129 (2014)CrossRefGoogle Scholar
  26. 26.
    Chen, Q., et al.: Optimization principles for convective heat transfer. Energy. 34(9), 1199–1206 (2009)CrossRefGoogle Scholar
  27. 27.
    Wang, G., An, L., Ma, H., et al.: Comsol Multiphysics Operation Guide and FAQ[M], pp. 133–135. China Communications Press, Beijing (2009)Google Scholar
  28. 28.
    Zhou, Y.L., Hong, W.P., Wang, S.L., et al.: Engineering Fluid Mechanics[M], pp. 65–69. China Electric Power Press, Beijing (2006)Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.School of Energy, Power and Mechanical Engineering, National Thermal Power Engineering and Technology Research CenterNorth China Electric Power UniversityBeijingChina

Personalised recommendations