Journal of the Australian Ceramic Society

, Volume 54, Issue 3, pp 557–564 | Cite as

The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle

  • Nattikran Yuangpho
  • Dang T. T. Trinh
  • Duangdao Channei
  • Wilawan Khanitchaidecha
  • Auppatham Nakaruk


In this research, the photocatalytic degradation of methylene blue (MB) as a dye pollutant was investigated in the presence of commercial TiO2 particles. The physical and optical characteristics of commercial TiO2 were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and UV diffuse reflection spectroscopy (UV–DRS) techniques. In addition, the influence of different operating parameters such as catalyst loading, pH value, and temperature on the photodegradation efficiency was evaluated. The results showed that the commercial TiO2 had an anatase phase with a surface area of 9.85 m2/g and a pore size of 85 Å; its absorbance spectrum was found to be 388 nm in the UV range involving a band gap of 3.2 eV. Besides, the optimized conditions for the highest photocatalytic activity of commercial TiO2 were 0.7 g/L of TiO2 catalyst and pH 3.0 under 50 °C of temperature, which acheived ~99% of MB removal.


Titanium dioxide Photocatalyst Photodegradation Methylene blue 


Funding information

This research received financial support from Naresuan University.


  1. 1.
    Hussain, S., Maqbool, Z., Ali, S., Yasmeen, T., Imran, M., Mahmood, F., Abbas, F.: Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicol Environ Saf. 98, 331–338 (2013)CrossRefGoogle Scholar
  2. 2.
    Mahvi, A.H., Ghanbarian, M., Nasseri, S., Khairi, A.: Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination. 239, 309–316 (2009)CrossRefGoogle Scholar
  3. 3.
    Morimoto, R.I., Santoro, M.G.: Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 16, 833–838 (1998)CrossRefGoogle Scholar
  4. 4.
    Hassena, H.: Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Mod Chem Appl. 4, 176 (2016)Google Scholar
  5. 5.
    Hahn, G.M., Shiu, E.C., West, B., Goldstein, L., Li, G.C.: Mechanistic implications of the induction of thermotolerance in Chinese hamster cells by organic solvents. Cancer Res. 45, 4138–4143 (1985)Google Scholar
  6. 6.
    El-Sharkawy, E.I., Soliman, A.Y., Al-Amer, K.M.: Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J Colloid Interf Sci. 310, 498–508 (2007)CrossRefGoogle Scholar
  7. 7.
    Kruanetr, S., Tan-Arsa, N., Wanchanthuek, R.: The study of methylene blue removal by using mixed TiO2 as a catalyst under solar light irradiation. Int J Sci Res Publ. 3, 1–7 (2013)Google Scholar
  8. 8.
    Lijuan, J., Yajun, W., Changgen, F.: Application of photocatalytic technology in environmental safety. Procedia Eng. 45, 993–997 (2012)CrossRefGoogle Scholar
  9. 9.
    Herrmann, J.M., Guillard, C., Pichat, P.: Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today. 17, 7–20 (1993)CrossRefGoogle Scholar
  10. 10.
    Nakata, K., Fujishima, A.: TiO2 photocatalysis: design and applications. J Photochem Photobiol C. 13, 169–189 (2012)CrossRefGoogle Scholar
  11. 11.
    Ravishankar, T.N., Ramakrishnappa, T., Nagaraju, G., Rajanaika, H.: Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 4, 146–154 (2015)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Wu, Z., Liu, D., Gao, Z.: Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett. 12, 143 (2017)CrossRefGoogle Scholar
  13. 13.
    Pala, M., Rakshit, R., Mandal, K.: Facile functionalization of Fe2O3 nanoparticles to induce inherent photoluminescence and excellent photocatalytic activity. Appl Phys Lett. 104, 233110 (2014)CrossRefGoogle Scholar
  14. 14.
    Hamdi, A., Ferreira, D.P., Ferraria, A.M., Conceição, D.S., Vieira Ferreira, L.F., Carapeto, A.P., Boufi, S., Bouattour, S., Botelho do Rego, A.M.: TiO2-CdS nanocomposites: effect of CdS oxidation on the photocatalytic activity. J Nanomater. 2016, 6581691 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhou, L., Wang, W., Liu, S., Zhang, L., Xu, H., Zhu, W.: A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem. 252, 120–124 (2006)CrossRefGoogle Scholar
  16. 16.
    Szilágyi, I.M., Fórizs, B., Rosseler, O., Szegedi, Á., Németh, P., Király, P., Tárkányi, G., Vajna, B., Varga-Josepovits, K., László, K., Tóth, A.L., Baranyai, P., Leskelä, M.: WO3 photocatalysts: influence of structure and composition. J Catal. 294, 119–127 (2012)CrossRefGoogle Scholar
  17. 17.
    Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X.: Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol Energy. 82, 706–713 (2008)CrossRefGoogle Scholar
  18. 18.
    Stafford, U., Gray, K.A., Kamat, P.V., Varma, A.: An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface. Chem Phys Lett. 205, 55–61 (1993)CrossRefGoogle Scholar
  19. 19.
    Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., Nadeem, M.A.: Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014)CrossRefGoogle Scholar
  20. 20.
    Hurum, D.C., Agrios, A.G., Gray, K.A.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B. 107, 4545–4549 (2003)CrossRefGoogle Scholar
  21. 21.
    Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J Photochem Photobiol C. 1, 1–21 (2000)CrossRefGoogle Scholar
  22. 22.
    Andronic, L., Duta, A.: The influence of TiO2 powder and film on the photodegradation of methyl orange. Mater Chem Phys. 12, 1078–1082 (2008)CrossRefGoogle Scholar
  23. 23.
    Akbal, F.: Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters. Environ Prog. 24, 317–322 (2005)CrossRefGoogle Scholar
  24. 24.
    Bagheri, S., Shameli, K., Hamid, S.B.A.: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem. 2013, 848205 (2013)CrossRefGoogle Scholar
  25. 25.
    Nam, W., Kim, J., Han, G.: Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere. 47, 1019–1024 (2002)CrossRefGoogle Scholar
  26. 26.
    Gao, B., Ma, Y., Cao, Y., Yang, W., Yao, J.: Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J Phys Chem B. 110, 14391–14397 (2006)CrossRefGoogle Scholar
  27. 27.
    Luo, M., Bowden, D., Brimblecombe, P.: Removal of dyes from water using a TiO2 photocatalyst supported on black sand. Water Air Soil Pollut. 198, 233–241 (2009)CrossRefGoogle Scholar
  28. 28.
    Qu, P., Zhao, J., Zang, L., Shen, T., Hidaka, H.: Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO2 particles by addition of an anionic surfactant in acidic media. Colloids Surf A Physicochem Eng Asp. 138, 39–50 (1998)CrossRefGoogle Scholar
  29. 29.
    Liao, D.L., Wu, G.S., Liao, B.Q.: Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp. 348, 270–275 (2009)CrossRefGoogle Scholar
  30. 30.
    Bavykin, D.V., Redmond, K.E., Nias, B.P., Kulak, A.N., Walsh, F.C.: The effect of ionic charge on the adsorption of organic dyes onto titanate nanotubes. Aust J Chem. 63, 270–275 (2010)CrossRefGoogle Scholar
  31. 31.
    Soares, E.T., Lansarin, M.A., Moro, C.C.: A study of process variables for the photocatalytic degradation of rhodamine B. Braz J Chem Eng. 24, 29–36 (2007)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Nattikran Yuangpho
    • 1
    • 2
  • Dang T. T. Trinh
    • 1
    • 2
  • Duangdao Channei
    • 3
    • 4
  • Wilawan Khanitchaidecha
    • 1
    • 2
  • Auppatham Nakaruk
    • 2
    • 5
  1. 1.Department of Civil Engineering, Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  2. 2.Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  3. 3.Research Center for Academic Excellence in Petroleum, Petrochemicals and Advanced MaterialsNaresuan UniversityPhitsanulokThailand
  4. 4.Department of Chemistry, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  5. 5.Department of Industrial Engineering, Faculty of EngineeringNaresuan UniversityPhitsanulokThailand

Personalised recommendations