Skip to main content
Log in

Simulation of Point Source Pollutant Dispersion Pattern: An Investigation of Effects of Prevailing Local Weather Conditions

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study investigated the potential effects of prevailing local atmospheric conditions on dispersion pattern of point source emissions from a Scrap-Iron and Steel Smelting Factory, Ile-Ife, Nigeria. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was adopted to predict the atmospheric dispersion of particulate matter (PM) emissions around the source. The PM estimates at two experimental points (M1 and M2) around the source were compared with the observations. The model simulations suggested that the PM was mostly dispersed by the dominant southwesterly wind such that the plume moved towards the northeast with variations in their spatial distributions across the seasons. Under low wind speeds and humid conditions, there was accumulation of the pollutants within the periphery of the point source. The simulated pollutant concentrations compared fairly well with the observations for both fine PM, i.e., PM2.5 (mean error = − 6441 µg m−3, kappa coefficient, κ = 0.31 at M1 and mean error = − 16,608 µg m−3, κ = 0.41 at M2) and the coarse, i.e., PM2.5–10 (mean error = − 5506 µg m−3, κ = 0.27 at M1 and mean error = − 4174 µg m−3, κ = 0.36 at M2). A hypothetical increase in stack height enhanced effective plume rise which resulted in a decrease in atmospheric pollutant concentration. The study has implication in industrial air pollution reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Owoade et al. (2015)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdulkareem AS, Odigure JO, Abenege S (2009) Predictive model for pollutant dispersion from gas flaring: a case study of oil producing area of Nigeria. Energy Sources Part A 31(12):1004–1015. https://doi.org/10.1080/15567030801909318

    Article  Google Scholar 

  • Abiye OE, Matthew OJ, Ayoola MA, Akinola OE, Ajao AI, Babatunde OA, Sunmonu LA (2018) Potential effects of hot-buoyant air pollution plume emitted from an industrial volume source on near-source and near-surface atmospheric stability. In: Monograph of atmospheric research 2018, Centre for Atmospheric Research, Anyingba, Nigeria

  • Abiye OE, Sunmonu LA, Ajao AI, Akinola OE, Ayoola MA, Jegede OO (2016a) Atmospheric dispersion modeling of uncontrolled gaseous pollutants (SO2 and NOX) emission from a scrap-iron recycling factory in Ile-Ife, Southwest Nigeria. Cogent Environ Sci 2(1):1275413. https://doi.org/10.1080/23311843.2016.1275413

    Article  Google Scholar 

  • Abiye OE, Akinola OF, Sunmonu LA, Ajao AI, Ayoola MA (2016b) Atmospheric ventilation corridors and coefficients for pollution plume released from an industrial facility in Ile-Ife suburb. Nigeria. Afri J Environ Sci Tech 10(10):338–349. https://doi.org/10.5897/ajest2016.2128

    Article  Google Scholar 

  • Adaramola MS, Oyewola OM (2011) On wind pattern and energy potential in Nigeria. Energy Policy 39(5):2501–2506. https://doi.org/10.1016/j.enpol.2011.02.016

    Article  Google Scholar 

  • Adelekan IO (2011) Climate change, weather extremes and society. J Environ Earth Sci 2(23):4–19

    Google Scholar 

  • Agboola OO, Muoghalu JI (2015) Changes in species diversity, composition, growth and reproductive parameters of native vegetation invaded by chromolaena odorata and Tithonia Diversifolia in Osun State, Southwest, Nigeria. FUTA J Res Sci 11(2):217–230

    Google Scholar 

  • AICTTRA (2012) Climate types found in Nigeria. http://www.forum.org.ng/system. Accessed 11 Jan 2013

  • Ajala OA, Olayiwola AM (2013) An Assessment of the growth of Ile-Ife, Osun State, Nigeria, Using Multi-Temporal Imageries. J Geol Geol. 5(2):43. https://doi.org/10.5539/jgg.v5n2p43

    Article  Google Scholar 

  • Ajayi OO (2010) The potential for wind energy in Nigeria. J Wind Eng 34(3):303–312. https://doi.org/10.1260/0309-524x.34.3.303

    Article  Google Scholar 

  • Arya F (1981) Modeling the depth of the stable boundary-layer. Boundary-Layer Meteorol 21(1):3–19

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego, p 420

    Google Scholar 

  • Awasthia S, Khareb M, Gargavac P (2006) General plume dispersion model (GPDM) for point source emission. Environ Modeling Assess 11:267–276. https://doi.org/10.1007/s10666-006-9041-y

    Article  Google Scholar 

  • Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Euro Resp J 26(2):309–318. https://doi.org/10.1183/09031936.05.00001805

    Article  Google Scholar 

  • Charter JR (1969) Map of ecological zones of Nigerian vegetation. Federal Department of Forestry, Ibadan

    Google Scholar 

  • Christiana NE, Amanambu CA (2013) Climate variation assessment based on rainfall and temperature in South-Western, Nigeria. J Environ Earth Sci 3(11):2224–3216

    Google Scholar 

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, Lee RF, Peters W, Brode R, Paumier JO (2004) AERMOD: Description of model formulation; EPA-454/R-03-004; U.S. Environmental Protection Agency: Research Park Triangle, NC; September 2004

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, Lee RF, Peters WD, Brode RW (2005) AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol 44:682–693. https://doi.org/10.1175/jam2227.1

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of reliability for nominal scales. Edu Psych Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psych Bull 70(4):213–220. https://doi.org/10.1037/h0026256

    Article  Google Scholar 

  • Cretu M, Deaconu M (2012) Air quality—monitoring and modelling. INCAS Bull 4(4):127–131. https://doi.org/10.13111/2066-8201.2012.4.4.11

    Article  Google Scholar 

  • Cretu M, Teleaba V, Ionescu S, Ionescu A (2010) Case study on pollution prediction through atmospheric dispersion modeling. WSEAS Environ Dev 8(6):604–613

    Google Scholar 

  • Ezeh GC, Obioh IB, Asubiojo OI, Abiye OE (2012) PIXE characterization of PM10 and PM2.5 particulates sizes collected in Ikoyi Lagos Nigeria. Toxico Environ Chem 94(5):884–894

    Article  Google Scholar 

  • Ezeh GC, Ugwo JP, Adebiyi FM, Abiye OE, Onwudiegwu CA, Obiajunwa EI (2018) Proton-induced X-ray emission (PIXE) analysis of trace elements of total atmospheric deposit(TAD) around a smelting industry: aerial pollution monitor. Hum Ecol Risk Assess: Inter J 24(4):925–940. https://doi.org/10.1080/10807039.2017.1395683

    Article  Google Scholar 

  • Goudarzi Gh, Rashidi R, Keishams F, Moradi M, Sadeghi S, Masihpour F, Shegerd M, Mehrizi EA, Shikhrobat MV, Khaniabadi YO (2017) An assessment on dispersion of carbon monoxide from a cement factory. Environ Health Eng Manag 4(3):163–168. https://doi.org/10.15171/ehem.2017.23

    Article  Google Scholar 

  • Gwet KL (2014) Handbook of inter-rater reliability: The definitive guide to measuring the extent of agreement among raters, 4th edn. Advanced Analytics, Gaithersburg

    Google Scholar 

  • Harris IC, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS4.00 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Ilaboya IR, Atikpo E, Umukoro L, Omofuma FE, Ezugwu MO (2011) Analysis of the effects of mixing height and other associated factors on the effective dispersion of plume. Ironical J Energy Environ 2(2):153–160

    Google Scholar 

  • Khlaifi A, Dahech S, Beltrando G, Ionescua A, Candaua Y (2008) Spatial dispersion modelling of SO2 according to the atmospheric circulation in a coastal city: sfax (Tunisia). Meteorol Appl 15:513–522. https://doi.org/10.1002/met.100

    Article  Google Scholar 

  • Leelossy A, Molnár F Jr, Izsák F, Havasi A, Lagzi I, Mészáros R (2014) Dispersion modeling of air pollutants in the atmosphere: a review. Central Euro J Geosci 6(3):257–278. https://doi.org/10.2478/s13533-012-0188-6

    Article  Google Scholar 

  • Manju M, Siddiqui TA (1998) Analysis of various schemes for the estimation of atmospheric stability classification. Atmo Environ 32(21):3775–3781. https://doi.org/10.1016/S1352-2310(98)00109-5

    Article  Google Scholar 

  • Muoghalu JI (2003) Contributions of throughfall, stemflow and litter fall to nutrient cycling in a secondary lowland rainforest in Ile-Ife, Nigeria. J Trop Forest Sci 15(1):339–410

    Google Scholar 

  • Nabil HA, Abbas AA (2015) Combined influence of stack height and exit velocity on dispersion of pollutants caused by Helwan Cement Factory. Int J Comput Appl 121(9):19–24. https://doi.org/10.5120/21568-4604

    Article  Google Scholar 

  • Norman EB (1984) Atmospheric dispersion. Handbook of air pollution technology, Pennsylvania

    Google Scholar 

  • Odekunle TO (2003) Rainfall and the length of the growing season in Nigeria. Int J Climatol 24(1):467–479. https://doi.org/10.1002/joc.1012

    Article  Google Scholar 

  • Ojo O (1997) Climates of West Africa. Heinemann, Ibadan

    Google Scholar 

  • Okozi SO, Onyuche JC, Omeje CO (2015) Challenges facing wind energy in Nigeria. Eur J Nat Appl Sci 3(1):1–7

    Google Scholar 

  • Omotosho JB (2007) Pre-rainy season moisture build-up and storm precipitation delivery in the West Africa Sahel. Int J Climatol 28:937–946. https://doi.org/10.1002/joc.1548

    Article  Google Scholar 

  • Onwudiegwu CA, Ezeh GC, Obioh IB (2015) Trace metals in total atmospheric depositions (TAD) of a Nigerian Island. J Atmosph Pollut 4(1):15–22

    Google Scholar 

  • Otaru AJ, Odigure JO, Okafor JO, Abdulkareem AS (2013) Model prediction of particulate dispersion from a cement plant in Nigeria. IOSR J Environ Sci Toxi Food Tech 3(2):97–110. https://doi.org/10.9790/2402-0326376

    Article  Google Scholar 

  • Owoade KO, Hopke PK, Olise FS, Ogundele LT, Fawole OG, Olaniyi BH, Jegede OO, Ayoola MA, Bashiru MI (2015) Chemical Compositions and Source Identification of Particulate Matter (PM2.5 and PM2.5–10) from a scrap iron and Steel making Industry along the Ife-Ibadan highway, Nigeria. Atmo Poll Res 6(1):107–119. https://doi.org/10.5094/apr.2015.013

    Article  Google Scholar 

  • Piotr H, Nahorski Z (2015) Emission data uncertainty in urban air quality modeling -case study. Environ Model Assess 20:583–597. https://doi.org/10.1007/s10666-015-9445-7

    Article  Google Scholar 

  • Pohjola M, Kousa A, Aarnio P, Koskentalo T, Kukkonen J, Härkönen J, Karppinen A (2000) Meteorological Interpretation of Measured Urban PM2.5 and PM10 Concentrations in the Helsinki Metropolitan Area. In Longhurst JWS, Brebbia CA, Power H (Eds.). Air Pollution VIII. Wessex Institute of Technology Press

  • Pohjola MA, Rantamäki M, Kukkonen J, Karppinen A, Berge E (2004) Meteorological evaluation of a severe air pollution episode in Helsinki on 27–29 December 1995. Boreal Environ Res 9(4):75–87

    Google Scholar 

  • Precious NE, David OE, Oluleye A (2011) Aspect of air quality status of Benny Island, Nigeria attributed to an LNG plant. Energy Environ 221(7):892. https://doi.org/10.1260/0958-305x.22.7.891

    Article  Google Scholar 

  • Qin Y, Oduyemi K (2003) Chemical composition of atmospheric aerosol in Dundee, UK. Atmos Environ 37(1):93–104. https://doi.org/10.1016/s1352-2310(02)00658-1

    Article  Google Scholar 

  • Rao X, Li F, Zhou N, Yang K (2008) Analysis of a large-scale haze over middle and eastern China. Meteorol Mon 34:89–96 (In Chinese)

    Google Scholar 

  • Rickun J (1993) Air permits, Title III, VOCs and foundries. Proceedings of the Environmental Affairs Conference. Milwaukee, WI. August 22–24

  • Seigneur C (2001) Current status of air quality models for particulate matter. J Air Waste Manag Associ 51(3):1508–1521. https://doi.org/10.1080/10473289.2001.10464383

    Article  Google Scholar 

  • Syed M, Nelson SC (2015) Guidelines for establishing reliability when coding narrative data. Emerging Adulthood 3(6):375–387. https://doi.org/10.1177/2167696815587648

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Am Meteorol Soc 84(9):1205–1217. https://doi.org/10.1175/bams-84-9-1205

    Article  Google Scholar 

  • USEPA (2004) Air quality criteria for particulate matter; EPA/600/P-99/002aF; USEPA-United States Environmental Protection Agency, Washington, DC, USA

  • Venkatram A, Isakov V, Pankratz D, Heumann J, Yuan J (2004) The analysis of data from an urban dispersion experiment. Atmos Environ 38:3647–3659. https://doi.org/10.1016/j.atmosenv.2004.03.045

    Article  Google Scholar 

  • Xie X, Semanjski I, Gautama S, Tsiligianni E, Deligiannis N, Rajan RT, Pasveer F, Philips W (2017) A review of urban air pollution monitoring and exposure assessment methods. ISPRS Inter J Geo-Info 6:389. https://doi.org/10.3390/ijgi6120389

    Article  Google Scholar 

  • Zeng S, Zhang Y (2017) The effect of meteorological elements on continuing heavy air pollution: a case study in the Chengdu Area during the 2014 spring festival. Atmosphere 8:71. https://doi.org/10.3390/atmos8040071

    Article  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife for providing the particulate data, point source data and the meteorological data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaniran. J. Matthew.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. There is no financial or personal relationship with a third party whose interests could be influenced by the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthew, O.J., Igbayo, A.N., Olise, F.S. et al. Simulation of Point Source Pollutant Dispersion Pattern: An Investigation of Effects of Prevailing Local Weather Conditions. Earth Syst Environ 3, 215–230 (2019). https://doi.org/10.1007/s41748-019-00087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-019-00087-z

Keywords

Navigation