Skip to main content
Log in

Large Eddy Simulation-Based Turbulent Combustion Models for Reactive Sprays: Recent Advances and Future Challenges

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Numerical simulations of turbulent reactive sprays are challenging owing to the presence of multiple timescales and multiphysics phenomena involving complex turbulence spray and turbulence-chemistry interactions. In turbulent spray flames, several physical phenomena such as primary and secondary atomization, droplet dispersion, interparticle collisions, evaporation, mixing, and combustion occur simultaneously, and hence it becomes a formidable task to model these complex interactions. To gain fundamental knowledge and advance current modeling capabilities, it may be appropriate to aim for progress in individual modeling of breakup, dispersion, mixing and combustion, which however cannot be viewed in complete isolation. A brief review of the development of state-of-the-art turbulent combustion models applicable to the dilute spray regime is presented. Therefore, complexities associated with the dense regime, including interparticle collisions as well as primary and secondary atomization, are not covered. Further, we restrict ourselves to a brief discussion on large eddy simulation, which has found applications in both laboratory and industrial applications of turbulent combustion without a change in phase. The gas phase-based turbulent combustion models such as flamelet, conditional moment closure and transported filtered density function methods have been developed and extensively used for combustion without a phase change. However, careful adaptation and extension of these models are necessary toward modeling of turbulent combustion with phase change. This article presents a review of recent advances and directions of future research on modeling of turbulent combustion for dilute sprays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

Abbreviations

\(B\) :

Spalding transfer number

\(C_{\text{p}}\) :

Specific heat at constant pressure

\(D\) :

Diameter

\(E_{\text{a}}\) :

Activation energy

\(g\) :

Acceleration due to gravity

\(L_{\text{v}}\) :

Latent heat of vaporization

\(Nu\) :

Nusselt number

\({\mathcal{R}}_{\text{u}}\) :

Universal gas constant

\(P\) :

Probability density function

\(q\) :

Subgrid flux

\(Q\) :

Conditional expectation

\({\text{S}}_{ij}\) :

Strain rate tensor

\(T\) :

Temperature

\(v\) :

Liquid phase velocity

\(W\) :

Molecular weight

\(Y\) :

Mass fraction

\(C\) :

Reaction progress variable

\(C_{\text{sgs}}\) :

Smagorinsky constant

\({\mathcal{D}}\) :

Diffusivity

\(G\) :

LES filter function

\(h\) :

Enthalpy

\(m\) :

Mass

\(Re\) :

Reynolds number

\(p\) :

Gas phase pressure

\(Pr\) :

Prandtl number

\(\dot{S}\) :

Interphase transfer term due to droplet evaporation

\(Sc\) :

Schmidt number

\(Sh\) :

Sherwood number

\(u\) :

Gas phase velocity

\(w\) :

Weight of a notional particle

\(x\) :

Spatial location

\(Z\) :

Mixture fraction

\(\alpha\) :

Total reactive scalars (including enthalpy)

\(\Delta\) :

LES filter width

\(\delta\) :

Dirac delta function

\(\mu\) :

Viscosity

\(\tau\) :

Timescale

\(\dot{\omega }\) :

Reaction rate

\(\beta\) :

Reactive scalars (without enthalpy)

\(\Delta_{\text{v}}\) :

Filter volume

\(\lambda\) :

Thermal conductivity

\(\rho\) :

Density

\(\tau_{ij}\) :

Stress tensor

\({\text{d}}\) :

Droplet

\({\text{g}}\) :

Gas phase

\({\text{p}}\) :

Notional particle

\({\text{sgs}}\) :

Subgrid scale

\({\text{F}}\) :

Fuel

\({\text{l}}\) :

Liquid phase

\({\text{sf}}\) :

Stochastic fields

CMC:

Conditional moment closure

ESF:

Eulerian stochastic field

FPV:

Flamelet progress variable

FSSF:

Fully stochastic separated flow

MMC:

Multiple mapping conditioning

PDF:

Probability density function

SDE:

Stochastic differential equation

DNS:

Direct numerical simulation

FDF:

Filtered density function

FGM:

Flamelet-generated manifolds

LES:

Large eddy simulation

MC:

Monte Carlo

SGS:

Subgrid scale

SPM:

Stochastic particle method

References

  1. Jenny P, Roekaerts D, Beishuizen N (2012) Modeling of turbulent dilute spray combustion. Prog Energy Combust Sci 38:846–887

    Article  CAS  Google Scholar 

  2. Dukowicz JK (1980) A particle-fluid numerical model for liquid sprays. J Comput Phys 35:229–253

    Article  Google Scholar 

  3. Pitsch H (2005) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482

    Article  Google Scholar 

  4. Burke SP, Schumann TEW (1928) Diffusion flames. Ind Eng Chem 20:998–1004

    Article  CAS  Google Scholar 

  5. Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10:319–339

    Article  CAS  Google Scholar 

  6. Bilger RW (1993) Conditional moment closure for turbulent reacting flow. Phys Fluids A Fluid Dyn 5:436–444

    Article  CAS  Google Scholar 

  7. Klimenko AY, Bilger RW (1999) Conditional moment closure for turbulent combustion. Prog Energy Combust Sci 25:595–687

    Article  CAS  Google Scholar 

  8. Ma L, Naud B, Roekaerts D (2016) Transported PDF modeling of ethanol spray in hot-diluted coflow flame. Flow Turbul Combust 96:469–502

    Article  CAS  Google Scholar 

  9. Chrigui M, Masri AR, Sadiki A, Janicka J (2013) Large eddy simulation of a polydisperse ethanol spray flame. Flow Turbul Combust 90:813–832

    Article  CAS  Google Scholar 

  10. Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192

    Article  Google Scholar 

  11. Jaberi FA, Colucci PJ, James S, Givi P, Pope SB (1999) Filtered mass density function for large-eddy simulation of turbulent reacting flow. J Fluid Mech 401:37

    Article  Google Scholar 

  12. Libby PA, Williams FA (1994) Turbulent reacting flows. Academic Press, London

    Google Scholar 

  13. De S, Lakshmisha KN, Bilger RW (2011) Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust Flame 158:1992–2008

    Article  CAS  Google Scholar 

  14. De S, Kim SH (2013) Large eddy simulation of dilute reacting sprays: droplet evaporation and scalar mixing. Combust Flame 160:2048–2066

    Article  CAS  Google Scholar 

  15. Ukai S, Kronenburg A, Stein OT (2014) Simulation of dilute acetone spray flames with LES-CMC using two conditional moments. Flow Turbul Combust 93:405–423

    Article  CAS  Google Scholar 

  16. Heye C, Raman V, Masri AR (2013) LES/probability density function approach for the simulation of an ethanol spray flame. Proc Combust Inst 34:1633–1641

    Article  CAS  Google Scholar 

  17. Ma L (2016) Computational modeling of turbulent spray combustion. Doctoral thesis, Delft University of Technology. https://doi.org/10.4233/uuid:c1c27066-a205-45f4-a7b4-e36016bc313a

  18. Masri AR, Gounder J, Kourmatzis A (2019) Experimental database, clean combustion research group, school of aerospace, mechanical and mechatronic engineering at the University of Sydney, Australia. http://web.aeromech.usyd.edu.au/thermofluids/database.php

  19. Gounder JD (2009) An Experimental Investigation of non-reacting and reacting spray jets. University of Sydney, Sydney

    Google Scholar 

  20. O’Loughlin W, Masri AR (2011) A new burner for studying auto-ignition in turbulent dilute sprays. Combust Flame 158:1577–1590

    Article  Google Scholar 

  21. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  22. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A Fluid Dyn 3:1760–1765

    Article  Google Scholar 

  23. Lilly DK (1992) A Proposed modification of the germano subgrid-scale closure method. Phys Fluids A Fluid Dyn 4:633–635

    Article  Google Scholar 

  24. Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200

    Article  CAS  Google Scholar 

  25. Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353

    Article  Google Scholar 

  26. Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32:1605–1618

    Article  CAS  Google Scholar 

  27. Chrigui M, Gounder J, Sadiki A, Masri AR, Janicka J (2012) Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust Flame 159:2718–2741

    Article  CAS  Google Scholar 

  28. Abramzon B, Sazhin S (2005) Droplet vaporization model in the presence of thermal radiation. Int J Heat Mass Transf 48:1868–1873

    Article  Google Scholar 

  29. Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2011) Multiphase flows with droplets and particles, 2nd edn. Taylor & Francis, New York

    Book  Google Scholar 

  30. Faeth GM (1983) Evaporation and combustion of sprays. Prog Energy Combust Sci 9:1–76

    Article  CAS  Google Scholar 

  31. Turn SR (2012) Introduction to combustion: concepts and applications, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  32. Ukai S, Kronenburg A, Stein OT (2013) LES-CMC of a dilute acetone spray flame. Proc Combust Inst 34:1643–1650

    Article  CAS  Google Scholar 

  33. Faeth GM (1977) Current status of droplet and liquid combustion. In: Progress energy combustion science, vol 3. Pergamon Press, pp 192–224

  34. Faeth GM (1996) Spray combustion phenomena. Symp Combust 26:1593–1612

    Article  Google Scholar 

  35. Apte SV, Mahesh K, Moin P (2009) Large-eddy simulation of evaporating spray in a coaxial combustor. Proc Combust Inst 32:2247–2256

    Article  CAS  Google Scholar 

  36. Bilger RW (2011) A mixture fraction framework for the theory and modeling of droplets and sprays. Combust Flame 158:191–202

    Article  CAS  Google Scholar 

  37. Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97

    Article  CAS  Google Scholar 

  38. Ihme M, Pitsch H (2008) Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust Flame 155:90–107

    Article  CAS  Google Scholar 

  39. Pitsch H (2007) FlameMaster: a C ++ computer program for 0D combustion and 1D laminar flame calculations. https://web.stanford.edu/group/pitsch/FlameMaster.htm

  40. Ma L, Roekaerts D (2016) Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model. Combust Flame 165:402–423

    Article  CAS  Google Scholar 

  41. Ma L, Roekaerts D (2017) Numerical study of the multi-flame structure in spray combustion. Proc Combust Inst 36:2603–2613

    Article  CAS  Google Scholar 

  42. Eckstein J, Chen J-Y, Chou C-P, Janicka J (2000) Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc Combust Inst 28:141–148

    Article  CAS  Google Scholar 

  43. Cao RR, Pope SB, Masri AR (2005) Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust Flame 142:438–453

    Article  CAS  Google Scholar 

  44. Mortensen M, Bilger RW (2009) Derivation of the conditional moment closure equations for spray combustion. Combust Flame 156:62–72

    Article  CAS  Google Scholar 

  45. Bray KNC, Peters N (1994) Chapter-2 in turbulent reacting flows. Academic Press, London

    Google Scholar 

  46. Carbonell D, Perez-Segarra CD, Coelho PJ, Oliva A (2009) Flamelet mathematical models for non-premixed laminar combustion. Combust Flame 156:334–347

    Article  CAS  Google Scholar 

  47. Ukai S (2014) Conditional moment closure modelling of turbulent spray flames. ITV Stuttgart

  48. Navarro-Martinez S, Kronenburg A (2009) LES-CMC simulations of a lifted methane flame. Proc Combust Inst. https://doi.org/10.1016/j.proci.2008.06.178

    Article  Google Scholar 

  49. Navarro-Martinez S, Kronenburg A, Di Mare F (2005) Conditional moment closure for large eddy simulations. Flow Turbul Combust 75:245–274

    Article  CAS  Google Scholar 

  50. Sreedhara S, Lakshmisha KN (2002) Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc Combust Inst 29:2069–2077

    Article  CAS  Google Scholar 

  51. Kronenburg A (2004) Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Phys Fluids 16:2640–2648

    Article  CAS  Google Scholar 

  52. Colucci PJ, Jaberi FA, Givi P, Pope SB (1998) Filtered density function for large eddy simulation of turbulent reacting flows. Phys Fluids 10:499–515

    Article  CAS  Google Scholar 

  53. Khan MN, Cleary MJ (2017) Sparse-Lagrangian MMC-LES modelling of reacting acetone spray. In: 11th Asia-Pacific Conf. Combust.

  54. Haworth DC (2010) Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 36:168–259

    Article  CAS  Google Scholar 

  55. Fox RO (2003) Computational models for turbulent reacting flows. Cambridge University Press. https://doi.org/10.1017/CBO9780511610103

  56. Prasad VN, Masri AR (2012) LES calculations of auto-ignition in a turbulent dilute methanol spray flame 18–21

  57. Heye C, Raman V, Masri AR (2015) Influence of spray combustion interactions on auto-ignition of methanol spray flames. Proc Combust Inst 35:1639–1648. https://doi.org/10.1016/j.proci.2014.06.087

    Article  CAS  Google Scholar 

  58. Jones WP, Lyra S, Marquis AJ (2010) Large eddy simulation of evaporating kerosene and acetone sprays. Int J Heat Mass Transf 53:2491–2505

    Article  CAS  Google Scholar 

  59. Pope SB (2000) Turbulent flows, 1st edn. Cambridge University Press, New York. https://doi.org/10.1088/0957-0233/12/11/705

  60. Gao F, O’Brien EE (1993) A large-eddy simulation scheme for turbulent reacting flows. Phys Fluids A Fluid Dyn 5:1282–1284

    Article  CAS  Google Scholar 

  61. Janicka J, Kolbe W, Kollmann W (1979) Closure of the transport equation for the probability density function of turbulent scalar fields. J Non-Equilib Thermodyn 4:47–66

    Article  CAS  Google Scholar 

  62. Dopazo C, O’Brien EE (1974) An approach to the autoignition of a turbulent mixture. Acta Astronaut 1:1239–1266

    Article  CAS  Google Scholar 

  63. Pope SB (1981) A monte carlo method for the pdf equations of turbulent reactive flow. Combust Sci Technol 25:159–174

    Article  CAS  Google Scholar 

  64. Pope SB (1990) Computations of turbulent combustion: progress and challenges. Proc Combust Inst 23:591–612

    Article  Google Scholar 

  65. James S, Anand M, Pope SB (2002) The Lagrangian PDF transport method for simulations of gas turbine combustor flows. In: 38th AIAA/ASME/SAE/ASEE Jt Propuls Conf & Exhib 2002

  66. Jones WP, Lyra S, Navarro-Martinez S (2012) Numerical investigation of swirling kerosene spray flames using large eddy simulation. Combust Flame 159:1539–1561

    Article  CAS  Google Scholar 

  67. Valiño L (1998) A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul Combust 60:157–172

    Article  Google Scholar 

  68. Möbus H, Gerlinger P, Brüggemann D (2001) Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust Flame 124:519–534

    Article  Google Scholar 

  69. Jones WP, Marquis AJ, Vogiatzaki K (2014) Large-eddy simulation of spray combustion in a gas turbine combustor. Combust Flame 161:222–239

    Article  CAS  Google Scholar 

  70. Sabel’nikov V, Soulard O (2005) Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys Rev E Stat Nonlinear Soft Matter Phys 72:016301

    Article  Google Scholar 

  71. Gounder JD (2010) Turbulent spray flames of acetone and ethanol approaching extinction AU—masri. A R Combust Sci Technol 182:702–715

    Article  Google Scholar 

  72. Gounder JD, Kourmatzis A, Masri AR (2012) Turbulent piloted dilute spray flames: flow fields and droplet dynamics. Combust Flame 159:3372–3397

    Article  CAS  Google Scholar 

  73. O’Loughlin W, Masri AR (2012) The structure of the auto-ignition region of turbulent dilute methanol sprays issuing in a vitiated co-flow. Flow Turbul Combust 89:13–35

    Article  Google Scholar 

  74. Cavaliere DE, Kariuki J, Mastorakos E (2013) A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames. Flow Turbul Combust 91:347–372

    Article  CAS  Google Scholar 

  75. Karpetis AN, Gomez A (2000) An experimental study of well-defined turbulent nonpremixed spray flames. Combust Flame 121:1–23

    Article  CAS  Google Scholar 

  76. Renou B, Cabot G, Marrero J, Verdier A (2017) Coria jet spray flame database 1–3

  77. Shum-Kivan F, Marrero Santiago J, Verdier A, Riber E, Renou B, Cabot G et al (2017) Experimental and numerical analysis of a turbulent spray flame structure. Proc Combust Inst 36:2567–2575

    Article  CAS  Google Scholar 

  78. Verdier A, Santiago JM, Vandel A, Godard G, Cabot G, Boukhalfa MA et al (2016) Experimental study of local extinction mechanisms on a spray jet flame. In: 18th Int Symp Appl Laser Imaging Tech to Fluid Mech 2016

  79. Correia Rodrigues H, Tummers MJ, van Veen EH, Roekaerts DJEM (2015) Spray flame structure in conventional and hot-diluted combustion regime. Combust Flame 162:759–773

    Article  CAS  Google Scholar 

  80. Rodrigues HRC, Tummers MJ, Roekaerts D (2013) Turbulent spray combustion in hot-diluted co-flow. In: Proc 9th Asia-Pacific conf combust 2013

  81. Ukai S, Kronenburg A, Stein OT (2015) Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry. Proc Combust Inst 35:1667–1674

    Article  CAS  Google Scholar 

  82. Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665

    Article  Google Scholar 

  83. Prasad VN, Masri AR, Navarro-Martinez S, Luo KH (2013) Investigation of auto-ignition in turbulent methanol spray flames using Large Eddy Simulation. Combust Flame 160:2941–2954

    Article  CAS  Google Scholar 

  84. Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation (ISAT). Combust Theory Model 1:41–63

    Article  CAS  Google Scholar 

  85. Khan N, Cleary MJ, Stein OT, Kronenburg A (2018) A two-phase MMC–LES model for turbulent spray flames. Combust Flame 193:424–439

    Article  CAS  Google Scholar 

  86. Klimenko AY, Pope SB (2003) The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys Fluids 15:1907–1925

    Article  CAS  Google Scholar 

  87. Cleary MJ, Klimenko AY (2009) A generalised multiple mapping conditioning approach for turbulent combustion. Flow Turbul Combust 82:477–491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, E., De, S. Large Eddy Simulation-Based Turbulent Combustion Models for Reactive Sprays: Recent Advances and Future Challenges. J Indian Inst Sci 99, 25–41 (2019). https://doi.org/10.1007/s41745-019-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-0109-5

Keywords

Navigation