Sorption of Cadmium, Lead, Arsenate, and Phosphate on Red Mud Combined with Phosphogypsum

Abstract

The combination of red mud (RM) and phosphogypsum (PG) is an interesting alternative for reusing these by-products as either adsorbent or soil amendment. In this context, this study aimed to evaluate cation (cadmium and lead) and anion (arsenate and phosphate) adsorption and desorption on RM, PG, and their blendings at different proportions (w/w): 100% PG, 75% PG + 25% RM, 50% PG + 50% RM, 25% PG + 75% RM, and 100% RM. Cadmium, lead, arsenate, and phosphate adsorption and desorption tests were carried out using 0.01 mol L−1 Ca(NO3)2 for cations and 0.03 mol L−1 NaCl for anions. The initial concentrations of cations and anions were 0.33 and 0.66 mmol L−1, respectively, and the equilibrium pH was 5.5 ± 0.2 (adsorbent:solution ratio of 1:100). RM adsorbed 99% of phosphate, 92% of lead, 87% of arsenate, and 26% of cadmium. The blending containing 75% of RM and 25% of PG adsorbed 95% of phosphate, 97% of lead, 76% of arsenate, and 32% of cadmium. The amount of cadmium and arsenate adsorbed increased with increasing RM proportion. Cadmium (16%) and arsenate (6.9%) desorption percentages were higher than lead (0.4%) and phosphate (1.3%). Effectively adsorbed percentages followed the decreasing order: phosphate (98%) > lead (91%) > arsenate (83%) > cadmium (19%) for RM and lead (97%) > phosphate (94%) > arsenate (70%) > cadmium (26%) for the mixture containing 75% of RM and 25% of PG.

Graphic Abstract

Article Highlights

  • Novel related to adsorbents based on by-products from aluminum and phosphoric acid industries.

  • Higher adsorption capacity of chemical pollutants was achieved by mixing RM with PG.

  • Adding 25% of PG into RM created an efficient adsorbent for removing cations and anions.

  • The tested elements were retained on adsorbents following the order: P>Pb>As>Cd.

  • Reduction of waste disposal through the upgrade of the by-product, which could be also used as amendment in contaminated soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

RM:

Red mud

PG:

Phosphogypsum

References

  1. Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solution. J Water Process Eng 10:39–47. https://doi.org/10.1016/j.jwpe.2016.01.014

    Article  Google Scholar 

  2. Ahn JY, Kang SH, Hwang KY, Kim HS, Kim JG, Song H, Hwang I (2015) Evaluation of phosphate fertilizers and red mud in reducing plant availability of Cd, Pb, and Zn in mine tailings. Environ Earth Sci 74:2659–2668. https://doi.org/10.1007/s12665-015-4286-x

    CAS  Article  Google Scholar 

  3. Altundogan HS, Altundogan S, Tümen F, Memnune B (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manage 20:761–767. https://doi.org/10.1016/S0956-053X(00)00031-3

    CAS  Article  Google Scholar 

  4. Altundogan HS, Altundogan S, Tümen F, Memnune B (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363. https://doi.org/10.1016/S0956-053X(00)00031-3

    CAS  Article  Google Scholar 

  5. Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82. https://doi.org/10.1016/S0269-7491(03)00250-1

    CAS  Article  Google Scholar 

  6. Bertocchi AF, Ghiani M, Peretti R, Zucca A (2006) Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. J Hazard Mater 134:112–119. https://doi.org/10.1016/j.jhazmat.2005.10.043

    CAS  Article  Google Scholar 

  7. Bradl BH (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18. https://doi.org/10.1016/j.jcis.2004.04.005

    CAS  Article  Google Scholar 

  8. Brazil (2006) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n 27, de 5 de junho de 2006. http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do?operacao=visualizar&id=16951. Accessed 10 Mai 2020.

  9. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-Ray identification. Mineralogical Society, London. https://doi.org/10.1180/mono-5

    Google Scholar 

  10. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environmental: a review. J Environ Chem Eng 5:2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    CAS  Article  Google Scholar 

  11. Cengeloglu Y, Tor A, Ersoz M, Arslan G (2006) Removal of nitrate from aqueous solution by using red mud. Sep Purif Technol 51:374–378. https://doi.org/10.1016/j.seppur.2006.02.020

    CAS  Article  Google Scholar 

  12. Cengeloglu Y, Tor A, Arslan G, Ersoz M, Gezgin S (2007) Removal of boron from aqueous solution by using neutralized red mud. J Hazard Mater 142:412–417. https://doi.org/10.1016/j.jhazmat.2006.08.037

    CAS  Article  Google Scholar 

  13. Chang-Jun L, Yan-Zhong L, Zhao-Kun L, Zhao-Yang C, Zhong-Guo Z, Zhi-Ping J (2007) Adsorption removal phosphate from aqueous solution by active red mud. J Environ Sci 19:1166–1170. https://doi.org/10.1016/S1001-0742(07)60190-9

    Article  Google Scholar 

  14. Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187–192. https://doi.org/10.1016/S0892-6875(03)00003-7

    CAS  Article  Google Scholar 

  15. Clark MW, Johnston M, Reichelt-Brushett AJ (2015) Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants. Appl Geochem 56:1–10. https://doi.org/10.1016/j.apgeochem.2015.01.015

    CAS  Article  Google Scholar 

  16. Cornell RM, Schwertmann U (2003) The iron oxides, 3rd edn. Wiley, Weinheim

    Google Scholar 

  17. Cornu S, Breeze D, Saada A, Baranger P (2003) The influence of pH, electrolyte type, and surface coating on arsenic(V) adsorption onto kaolinites. Soil Sci Soc Am J 67:1127–1132. https://doi.org/10.2136/sssaj2003.1127

    CAS  Article  Google Scholar 

  18. Costa ETS, Guilherme LRG, Lopes G, Curi N (2012a) Mono- and multielement sorption of trace metals on oxidic industrial by-products. Water Air Soil Pollut 223:1661–1670. https://doi.org/10.1007/s11270-011-0973-8

    CAS  Article  Google Scholar 

  19. Costa ETS, Guilherme LRG, Lopes G, Lima JM, Curi N (2012b) Competitive sorption of arsenate and phosphate on aluminum mining by-product. Water Air Soil Pollut 223:5433–5444. https://doi.org/10.1007/s11270-012-1291-5

    CAS  Article  Google Scholar 

  20. Costa ETS, Guilherme LRG, Lopes G, Marques JJ, Curi N (2014) Effect of Equilibrium Solution Ionic Strength on the Adsorption of Zn, Cu, Cd, Pb, As, and P on aluminum mining by-product. Water Air Soil Pollut 225:1894–1905. https://doi.org/10.1007/s11270-014-1894-0

    CAS  Article  Google Scholar 

  21. Cusack PB, Healy MG, Ryan PC, Burke IT, O' Donoghue LMT, Ujaczki E, Courtney R (2018) Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. J Clean Prod 179:217-224. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.01.092

  22. Du Y, Dai M, Cao J, Peng C (2019) Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb(II) and Cr(VI) from aqueous solutions. RSC Adv 9:33486–33496. https://doi.org/10.1039/C9RA06978J

    CAS  Article  Google Scholar 

  23. Echeverría JC, Morera MT, Mazkiarán C, Garrido JJ (1998) Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. Environ Pollut 101:275–284. https://doi.org/10.1016/S0269-7491(98)00038-4

    Article  Google Scholar 

  24. United States Environmental Protection Agency—USEPA (1998). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. In: USEPA. SW-846: test methods for evaluating solid waste, physical/chemical methods. Washington: Environmental Protection Agency, 1–20. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed 10 Mai 2020.

  25. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotecnol 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001

    Article  Google Scholar 

  26. Gao Y, Mucci A (2003) Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem Geol 199:91–109. https://doi.org/10.1016/S0009-2541(03)00119-0

    CAS  Article  Google Scholar 

  27. Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. J Geochem Explor 182:218–227. https://doi.org/10.1016/j.gexplo.2017.03.003

    CAS  Article  Google Scholar 

  28. Genç H, Tjell JC, McConchie D, Schuiling O (2003) Adsorption of arsenate from water using neutralized red mud. J Colloid Interface Sci 264:327–334. https://doi.org/10.1016/S0021-9797(03)00447-8

    CAS  Article  Google Scholar 

  29. Genç-Fuhrman H, Tjell JC, McConchie D (2004) Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol). J Colloid Interface Sci 271:313–320. https://doi.org/10.1016/j.jcis.2003.10.011

    CAS  Article  Google Scholar 

  30. Genç-Fuhrman H, Bregnhoj H, McConchie D (2005) Arsenate removal from water using sand-red mud columns. Water Res 39:2944–2954. https://doi.org/10.1016/j.watres.2005.04.050

    CAS  Article  Google Scholar 

  31. Ghahremani D, Mobasherpour I, Mirhosseini SA (2017) Sorption thermodynamic and kinetic studies of Lead removal from aqueous solutions by nano Tricalcium phosphate. Bull Soc R Sci Liège 86:96–112. https://doi.org/10.25518/0037-9565.7231

    CAS  Article  Google Scholar 

  32. Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red mud. Environ Pollut 142:530–539. https://doi.org/10.1016/j.envpol.2005.10.017

    CAS  Article  Google Scholar 

  33. Guo T, Gu H, Ma S, Wang N (2020) Increasing phosphate sorption on barium slag by adding phosphogypsum for non-hazardous treatment. J Environ Manage 270:110823. https://doi.org/10.1016/j.jenvman.2020.110823

    CAS  Article  Google Scholar 

  34. Gupta VK, Sharma S (2002) Removal of cadmium and zinc from aqueous solutions using red mud. Environ Sci Technol 36:3612–3617. https://doi.org/10.1021/es020010v

    CAS  Article  Google Scholar 

  35. Gustafsson JP (2013) Visual MINTEQ, version 3.1. Stockholm: KTH, Kungliga Tekniska Högskolgn [Royal Institute of Technology], Department of Land and Water Resources Engineering. https://vminteq.lwr.kth.se/download/. Accessed 10 Mai 2020

  36. Hettiarachchi GM, Pierzynski GM, Ransom MD (2001) In situ stabilization of soil lead using phosphorus. J Environ Qual 30:1214–1221. https://doi.org/10.2134/jeq2001.3041214x

    CAS  Article  Google Scholar 

  37. Hua Y, Heal KV, Friesl-Hanl W (2017) The use of red mud as an immobilizer for metal/metalloid-contaminated soil: a review. J Hazar Mat 325:17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073

    CAS  Article  Google Scholar 

  38. Huang W, Wang S, Zhu Z, Li L, Yao X, Rudolph V, Haghseresht F (2008) Phosphate removal from wastewater using red mud. J Hazar Mat 158:35–42. https://doi.org/10.1016/j.jhazmat.2008.01.061

    CAS  Article  Google Scholar 

  39. International Atomic Energy Agency - IAEA (2013). Radiation Protection and Management of NORM Residues in the Phosphate Industry. Safety Reports Series. No. 78. Viena: International Atomic Energy Agency. 288 p. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1582_web.pdf. Accessed 07 Mai 2020

  40. Jackson ML (1979) Soil chemical analysis: advanced course. Prentice-Hall, Madison

    Google Scholar 

  41. Jasinski SM (2019) Phosphate rock, mineral commodity summaries, national minerals information center, united states geological survey—USGS. Washington. https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information. Accessed 21 Mai 2019.

  42. Keng JCW, Uehara G (1974) Chemistry, mineralogy and taxonomy of Oxisols and Ultisols. Proc Soil Crop Sci Soc 33:119–126

    Google Scholar 

  43. Khairul MA, Zanganeh J, Moghtaderi, (2019) The composition, recycling and utilisation of Bayer red med. Resour Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  44. Kosma C, Balomenou G, Salahas G, Deligiannakis Y (2009) Electrolyte ion effects on Cd2+ binding at Al2O3 surface: specific synergism versus bulk effects. J Colloid Interface Sci 331:263–274. https://doi.org/10.1016/j.jcis.2008.11.023

    CAS  Article  Google Scholar 

  45. Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, Zhang Z, Fan J, Jia Z (2006) Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 137:374–383. https://doi.org/10.1016/j.jhazmat.2006.02.011

    CAS  Article  Google Scholar 

  46. Li P, Peng X, Luan Z, Zhao T, Zhang C, Liu B (2016) Effects of red mud addition on cadmium accumulation in cole (Brassica campestris L.) under high fertilization conditions. J Soils Sediments 16:2097–2104. https://doi.org/10.1007/s11368-016-1392-7

    CAS  Article  Google Scholar 

  47. Li H, Liu Y, Luo Z, Zhou Y, Hou D, Mao Q, Zhi D, Zhang J, Yang Y, Luo L (2019) Effect of RM-based-passivator for the remediation of two kinds of Cd polluted paddy soils and mechanism of Cd(II) adsorption. Environ Technol 23:1–11. https://doi.org/10.1080/09593330.2019.1675772

    CAS  Article  Google Scholar 

  48. Lin JY, Kim M, Li D, Kim H, Huang CP (2020) The removal of phosphate by thermally treated red mud from water: The effect of surface chemistry on phosphate immobilization. Chemosphere 247:125867–125877. https://doi.org/10.1016/j.chemosphere.2020.125867

    CAS  Article  Google Scholar 

  49. Lombi E, Zhao FJ, Zhang G, Sun B, Fitz W, Zhang H, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118:435–443. https://doi.org/10.1016/S0269-7491(01)00294-9

    CAS  Article  Google Scholar 

  50. Lopes G, Guilherme LRG, Costa ETS, Curi N, Penha HGV (2013) Increasing arsenic sorption on red mud by phosphogypsum addition. J Hazard Mater 262:1196–1203. https://doi.org/10.1016/j.jhazmat.2012.06.051

    CAS  Article  Google Scholar 

  51. Maenpaa KA, Kukkonen JVK, Lydy MJ (2002) Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay. Arch Environ Contam Toxicol 43:389–398. https://doi.org/10.1007/s00244-002-1248-6

    CAS  Article  Google Scholar 

  52. Marchi G, Spehar CR, Sousa-Silva JC, Guilherme LRG, Martins ES (2020) Research perspectives on the use of phosphogypsum in the Brazilian Cerrado. J Agric Food Dev 6:22–30. http://dx.doi.org/https://doi.org/10.30635/2415-0142.2020.06.03

  53. Mekaru T, Uehara G (1972) Anion adsorption in ferruginous tropical soils. Soil Sci Soc Am Proc 36:296–300. https://doi.org/10.2136/sssaj1972.03615995003600020027x

    CAS  Article  Google Scholar 

  54. Mishra T, Pandey VC, Singh P, Singh NB, Singh N (2017) Assessment of phytoremediation potential of native grass species growing on red mud deposits. J Geochem Explor 182:206–209. https://doi.org/10.1016/j.gexplo.2016.12.015

    CAS  Article  Google Scholar 

  55. Morera MT, Echeverría JC, Mazkiarán C, Garrido JJ (2001) Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ Pollut 113:135–144. https://doi.org/10.1016/S0269-7491(00)00169-X

    CAS  Article  Google Scholar 

  56. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    CAS  Article  Google Scholar 

  57. Mustafa G, Singh B, Kookana RS (2004) Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere 57:1325–1333. https://doi.org/10.1016/j.chemosphere.2004.08.087

    CAS  Article  Google Scholar 

  58. Narayanan SL, Venkatesan G, Potheher IV (2018) Equilibrium studies on removal of lead (II) ions from aqueous solution by adsorption using modified red mud. J Environ Sci Technol 15:1687–1698. https://doi.org/10.1007/s13762-017-1513-x

    CAS  Article  Google Scholar 

  59. Pichinelli BC, Silva MSG, Conceição FT, Menegário AA, Antunes MLP, Navarro GRB, Moruzzi RB (2017) Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-Neutralised Red Mud. Water Air Soil Pollut 228:24–36. https://doi.org/10.1007/s11270-016-3208-1

    CAS  Article  Google Scholar 

  60. Pierangeli MAP, Guilherme LRG, Curi N, Anderson SJ, Lima JM (2004) Adsorção e dessorção de cádmio, cobre e chumbo por amostras de Latossolos pré-tratadas com fósforo. Rev Bras Cienc Solo 28:377–384. https://doi.org/10.1590/S0100-06832004000200016

    CAS  Article  Google Scholar 

  61. Pietrelli L, Ippolito NM, Ferro S, Dovì VG, Vocciante M (2019) Removal of Mn and As from drinking water by red mud and pyrolusite. J Environ Manage 237:526–533. https://doi.org/10.1016/j.jenvman.2019.02.093

    CAS  Article  Google Scholar 

  62. Pradhan J, Das J, Das S, Thakur RS (1998) Adsorption of phosphate from aqueous solutions using activated red mud. J Colloid Interface Sci 204:169–172. https://doi.org/10.1006/jcis.1998.5594

    CAS  Article  Google Scholar 

  63. Rahnemaie R, Hiemstra T, Van Riemsdijk WH (2006) Inner- and outer sphere complexation of ions at the goethite-solution interface. J Colloid Interface Sci 297:379–388. https://doi.org/10.1016/j.jcis.2005.11.003

    CAS  Article  Google Scholar 

  64. Raii M, Minh DP, Sanz FJE, Nzihou A (2014) Lead and Cadmium removal from aqueous solution using an industrial gypsum by-product. Proc Eng 83:415–422. https://doi.org/10.1016/j.proeng.2014.09.050

    CAS  Article  Google Scholar 

  65. Rashad AM (2017) Phosphogypsum as a construction material. J Clean Prod 166:732–743. https://doi.org/10.1016/j.jclepro.2017.08.049

    CAS  Article  Google Scholar 

  66. Rubinos DA, Spagnoli G (2019) Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). J Environ Manage 232:271–285. https://doi.org/10.1016/j.jenvman.2018.09.041

    CAS  Article  Google Scholar 

  67. Santona L, Castaldi P, Melis P (2006) Evaluation of the interaction mechanisms between red muds and heavy metals. J Hazard Mater 136:324–329. https://doi.org/10.1016/j.jhazmat.2005.12.022

    CAS  Article  Google Scholar 

  68. Saueia CHR, Mazzilli BP (2006) Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. J Environ Radioact 89:229–239. https://doi.org/10.1016/j.jenvrad.2006.05.009

    CAS  Article  Google Scholar 

  69. Silva Filho EB, Alves MCM, Da Motta M (2007) Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas. Rev Matéria 12:322–338. https://doi.org/10.1590/S1517-70762007000200011

    Article  Google Scholar 

  70. Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium and calcium on arsenic sorption. J Environ Qual 31:557–563. https://doi.org/10.2134/jeq2002.5570

    CAS  Article  Google Scholar 

  71. Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  72. Sprynskyy M, Buszewski B, Terzyk AP, Namiesnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28. https://doi.org/10.1016/j.jcis.2006.07.068

    CAS  Article  Google Scholar 

  73. Stachowicz M, Hiemstra T, Van Riemsdijk WH (2008) Multi-competitive interaction of As (III) and As (V) oxyanions with Ca2+, Mg2+, PO34-, and CO32- ions on goethite. J Colloid Interface Sci 320:400–414. https://doi.org/10.1016/j.jcis.2008.01.007

    CAS  Article  Google Scholar 

  74. Su M, Liao CZ, Ma S, Zhang K, Tang J, Liu C, Shih K (2019) Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor. Environ Pollut 249:144–151. https://doi.org/10.1016/j.envpol.2019.02.075

    CAS  Article  Google Scholar 

  75. Swedlund PJ, Webster JG, Miskelly GM (2009) Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: properties of the ternary complex. Geochim Cosmochim Acta 73:1548–1562. https://doi.org/10.1016/j.gca.2008.12.007

    CAS  Article  Google Scholar 

  76. Taneez M, Hurel C (2019) A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ Sci Pollut Res 26:22106–22125. https://doi.org/10.1007/s11356-019-05576-2

    CAS  Article  Google Scholar 

  77. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise de solo. Brasília: Empresa Brasileira de Pesquisa Agropecuária—Embrapa Informação Tecnológica. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1094303/1/Pt3Cap6Fracionamentoquimicodamateriaorganica.pdf

  78. Velenturf APM, Archer SA, Gomes HI, Christgen B, Lag-Brotons AJ, Purnell P (2019) Circular economy and the matter of integrated resources. Sci Total Environ 689:963–969. https://doi.org/10.1016/j.scitotenv.2019.06.449

    CAS  Article  Google Scholar 

  79. Wang L, Hu G, Lyu F, Yue T, Tang H, Han H, Yang Y, Liu R, Sun W (2019) Application of red mud in wastewater treatment. Minerals 9:281–302. https://doi.org/10.3390/min9050281

    CAS  Article  Google Scholar 

  80. Wang F, Pan H, Xu J (2020) Evaluation of red mud based binder for the immobilization of copper, lead and zinc. Environ Pollut 263:114416–114422. https://doi.org/10.1016/j.envpol.2020.114416

    CAS  Article  Google Scholar 

  81. Xue S, Li M, Jiang J, Millar GJ, Li C, Kong X (2019) Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics. J Environ Sci 77:1–10. https://doi.org/10.1016/j.jes.2018.05.016

    Article  Google Scholar 

  82. Yaacoubi H, Zidani O, Mouflih M, Gourai M, Sebti S (2014) Removal of Cadmium from water using Natural phosphate as Adsorbent. Procedia Eng 83:386–393. https://doi.org/10.1016/j.proeng.2014.09.039

    CAS  Article  Google Scholar 

  83. Yang T, Wang Y, Sheng L, He C, Sun W, He Q (2020) Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption. J Environ Manage 255:109866–109876. https://doi.org/10.1016/j.jenvman.2019.109866

    CAS  Article  Google Scholar 

  84. Zambrosi FCB, Alleoni LRF, Caire EF (2007) Aplicação de gesso agrícola e especiação iônica da solução de um Latossolo sob sistema plantio direto. Cienc Rural 37:110–117. https://doi.org/10.1590/S0103-84782007000100018

    CAS  Article  Google Scholar 

  85. Zhou R, Liu X, Luo L, Zhou Y, Wei J, Chen A, Tang L, Wu H, Deng Y, Zhang F, Wang Y (2017) Remediation of Cu, Pb, Zn, and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int Biodeter Biodegr 118:73–81. https://doi.org/10.1016/j.ibiod.2017.01.023

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES/PNPD, CNPq, and FAPEMIG for financial support and for granting scholarships to the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enio Tarso de Souza Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Souza Costa, E.T., Guilherme, L.R.G., Lopes, G. et al. Sorption of Cadmium, Lead, Arsenate, and Phosphate on Red Mud Combined with Phosphogypsum. Int J Environ Res (2021). https://doi.org/10.1007/s41742-021-00319-z

Download citation

Keywords

  • Sorption
  • Cations
  • Anions
  • By-product
  • Adsorbent