Skip to main content

Advertisement

Log in

Efficiency Enhancement of Dye-Sensitized Solar Cells Based on Gracilaria/Ulva Using Graphene Quantum Dot

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSC) have been assembled using natural dyes extracted from the red (Gracilaria) and green (Ulva) algae as photosensitizers and the effect of adding Graphene quantum dot (GQD) has been investigated. The open-circuit voltage (VOC) values of natural dyes of Gracilaria, Gracilaria + GQD, Ulva, and Ulva + GQD are 0.64, 0.73, 0.70, and 0.75, respectively. The short circuit current density (JSC) values are varied from 0.96 to 2.26 mA cm−2, and the fill factor (FF) from 52 to 56% for the mentioned samples. The best-energy conversion efficiency of approximately 0.94% has been achieved for DSSC with Gracilaria + GQD with JSC equal 2.26 mA cm−2, VOC is 0.73 V, and FF is 56%.

Article Highlights

  • Dye-sensitized solar cells were assembled using red (Gracilaria) and green (Ulva) algae.

  • The results showed that adding the Graphene quantum dot to dye as a sensitizer increased significantly the efficiency.

  • The best energy conversion efficiency of approximately 0.94% was achieved.

  • To the best of our knowledge, there is no report for this kind of solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghelifar M, Kimiagar S (2018) pH effect on the size of graphene quantum dot synthesized by using pulse laser irradiation. Phys Chem Res 6(2):237

    CAS  Google Scholar 

  • Ali B (2015) Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide. Chin Phys B 24(4):047205

    Google Scholar 

  • Anand M, Suresh S (2015) Marine seaweed Sargassum wightii extract as a low-cost sensitizer for ZnO photoanode based dye-sensitized solar cell. Adv Nat Sci Nanosci Nanotechnol 6(3):035008

    Google Scholar 

  • Ananth S, Vivek P, Solaiyammal T, Murugakoothan P (2015) Pre dye treated titanium dioxide nano particles sensitized by natural dye extracts of Pterocarpus marsupium for dye sensitized solar cells. Optik 126:1027

    CAS  Google Scholar 

  • Argazzi R et al (2004) Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. J Photoch Photobio A 164(1–3):15

    CAS  Google Scholar 

  • Bach U et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583

    CAS  Google Scholar 

  • Bessho T et al (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew Chem Int Edit 49(37):6646

    CAS  Google Scholar 

  • Calogero G et al (2010) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int J Mol Sci 11(1):254

    CAS  Google Scholar 

  • Calogero G et al (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86(5):1563

    CAS  Google Scholar 

  • Calogero G et al (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44(10):3244

    CAS  Google Scholar 

  • Calogero G, Citro I, Di Marco G, Minicante SA, Morabito M, Genovese G (2014) Self-assembly of organic nanomaterials and biomaterials: the bottom-up approach for functional nanostructures formation and advanced applications. Acta Part A Mol Biomol Spectrosc 117:702

    CAS  Google Scholar 

  • Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energ Mat Sol C 92(11):1341

    CAS  Google Scholar 

  • Dai Q, Rabani J (2002) Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium. New J Chem 26(4):421

    CAS  Google Scholar 

  • Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) Hue tunable, high color saturation and high-efficiency graphene/silicon heterojunction solar cells with MgF2/ZnS double anti-reflection layer. Nano Energy 31:359

    CAS  Google Scholar 

  • Enciso P, Cerdá MF (2016) Solar cells based on the use of photosensitizers obtained from Antarctic red algae. Cold Reg Sci Technol 126:51

    Google Scholar 

  • Fang X, Li M, Guo K, Li J, Pan M, Bai, et al (2014) Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots. Electrochim Acta 137:634

    CAS  Google Scholar 

  • Gray JL (2020) The physics of the solar cell. Handbook of photovoltaic science and engineering, 2nd edn. Purdue University, West Lafayette, Indiana, USA

  • Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R et al (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960

    CAS  Google Scholar 

  • Hao S et al (2006) A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Sol Energy 80(2):209

    CAS  Google Scholar 

  • Hao Y et al (2016) Novel blue organic dye for dye-sensitized solar cells achieving high efficiency in cobalt-based electrolytes and by co-sensitization. ACS Appl Mater Inter 8(48):32797

    CAS  Google Scholar 

  • Hiramoto M, Fujiwara H, Yokoyama M (1991) Morphological studies of organic photovoltaic blendsApplied physics letters. Appl Phys Lett 58(10):1062

    CAS  Google Scholar 

  • Ho NT et al (2016) Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells. Sci Rep 6:30327

    CAS  Google Scholar 

  • Hu Y, Robertson N (2016) Molecular engineering of potent sensitizers for very efficient light harvesting in thin-film solid-state dye-sensitized solar cells. Front Optoelectron 9(1):38

    Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kano M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture. J Am Chem Soc 130(12):4007

    CAS  Google Scholar 

  • Kroeze JE, Hirata N, Schmidt-Mende L, Orizu C, Ogier SD, Carr K et al (2006) Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: Interactions, nanostructures and applications to dye-sensitized solar cells. Adv Funct Mater 16(14):1832

    CAS  Google Scholar 

  • Kuang D et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(6):1113

    CAS  Google Scholar 

  • Kundu S, Sarojinijeeva P, Karthick R, Anantharaj G, Saritha G, Bera R et al (2017) Synthesis of magnetically reusable Fe3O4 nanospheres-N, Sco-doped graphene quantum dots enclosed CdSe its application as a photocatalyst. Electrochim Acta 242:337

    CAS  Google Scholar 

  • Long R (2013) Understanding the Electronic Structures of Graphene Quantum Dot Physisorption and Chemisorption onto the TiO2 (110) Surface: A First-Principles Calculation. Chem Phys Chem 14(3):579

    CAS  Google Scholar 

  • Lu J, Yeo PSE, Gan CK, Wu P, Loh KP (2011) Theoretical studies on the growth mechanism of chemical vapor deposition of graphene on metal surface. Nat Nanotechnol 6(4):247

    CAS  Google Scholar 

  • Mahmood A (2016) Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications. Sol Energy 123:127

    CAS  Google Scholar 

  • Mihalache I, Radoi A, Mihaila M, Munteanu C, Marin A, Danila M et al (2015) Intrinsic limitations of impedance measurements in determining electric double layer capacitances. Electrochim Acta 153:306

    CAS  Google Scholar 

  • Najafi V, Aghelifar M, Kimiagar S (2017) A novel synthesis of CZTS quantum dots using pulsed laser irradiation. Superlattice Microst 109:702

    CAS  Google Scholar 

  • Najafi V, Kimiagar S (2018) Cd-free Cu2ZnSnS4 thin film solar cell on a flexible substrate using nano-crystal ink. Thin Solid Films 657:70

    CAS  Google Scholar 

  • Narayan MR (2012) Graphene oxide liquid crystals: discovery. Evolution and applications. ADV Mater Res-Switz 16(1):208

    CAS  Google Scholar 

  • Nazeeruddin MK et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613

    CAS  Google Scholar 

  • Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung, et al (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170(1):226

    CAS  Google Scholar 

  • O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    CAS  Google Scholar 

  • Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978

    CAS  Google Scholar 

  • Paulo S, Palomares E, Martinez-Ferrero E (2016) Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Nanomater Basel 6(9):157

    Google Scholar 

  • Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844

    CAS  Google Scholar 

  • Prabavathy N, Shalini S, Balasundaraprabhu R, Dhayalan Velauthapillai S, Prasanna G, Muthukumarasamy BN (2018) Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications. Int J Energy Res 42(2):790

    CAS  Google Scholar 

  • Riesen H, Wiebeler C, Schumacher S (2014) Optical spectroscopy of graphene quantum dots: the case of C132. J Phys Chem A 118(28):5189

    CAS  Google Scholar 

  • Ritter KA, Lyding JW (2009) Metal ion binding with carbon nanotubes and graphene: Effect of chirality and curvature. Nat Mater 8(3):235

    CAS  Google Scholar 

  • Sathiyan G et al (2016) Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57(3):243

    CAS  Google Scholar 

  • Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S et al (2005) Theoretical study of indoline dyes for dye-sensitized solarcells. Adv Mater 17(7):813

    CAS  Google Scholar 

  • Shalini S, Balasundara P, Prasanna S, Tapas K, Senthilarasu S (2015) The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Renew Sust Energy Rev 51:1306

    CAS  Google Scholar 

  • Smestad GP (1998) Education and solar conversion: demonstrating electron transfer. Sol Energ Mat Sol C 55(1):157

    CAS  Google Scholar 

  • Snaith HJ, Grätzel M (2007) Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. Adv Mater 19(21):3643

    CAS  Google Scholar 

  • Wallace J (2009) Temporal stability of blue phosphorescent organic light-emitting diodes affected by thermal annealing of emitting layers. University of Rochester

  • Wang Z-S et al (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordin Chem Rev 248(13–14):1381

    CAS  Google Scholar 

  • Wolf M (1971) A new look at silicon solar cell performance. Energy Convers 11:63

    CAS  Google Scholar 

  • Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L et al (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136

    CAS  Google Scholar 

  • Zhao Q, Xie T, Peng L, Lin Y, Wang P, Peng L et al (2007) Size-and orientation-dependent photovoltaic properties of ZnO nanorods. J Phys Chem C 111(45):17136

    CAS  Google Scholar 

  • Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L et al (2014) Efficiency enhancement of Perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136(10):3760

    CAS  Google Scholar 

  • Zhu C, Yang S, Wang G, Mo R, He P, Sun J et al (2015) A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. J Mater Chem B 3(34):6871

    CAS  Google Scholar 

  • Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858

    CAS  Google Scholar 

  • Zhu S, Zhang J, Tang A, Qiao C, Wang L, Wang H et al (2012) Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Adv Funct Mater 22:4732

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mashinchian Moradi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedi, A., Moradi, A.M., Kimiagar, S. et al. Efficiency Enhancement of Dye-Sensitized Solar Cells Based on Gracilaria/Ulva Using Graphene Quantum Dot. Int J Environ Res 14, 393–402 (2020). https://doi.org/10.1007/s41742-020-00265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-020-00265-2

Keywords

Navigation