Skip to main content
Log in

Temperature and Gas Pressure Monitoring and Leachate Pumping Tests in a Newly Filled MSW Layer of a Landfill

  • Research Paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Field test data on the simultaneous variations of leachate level, temperature and gas pressure in waste can be used in verifying the theoretical solution of coupled model of gas pressure and temperature in municipal solid waste (MSW) landfills. The correlation between the variations of these properties caused by leachate pumping is a major concern in the management of landfills. Therefore, temperature and gas pressure monitoring and leachate pumping tests were conducted in a newly filled MSW layer of a landfill located at Wuxi, southeastern China. The multifunctional extraction well and monitoring wells were designed to monitor the simultaneous variations of leachate level, temperature and gas pressure. The spatial and temporal distributions of these parameters and their correlation were investigated and analyzed. The results show that the highest waste temperature occurs near the leachate level. The gas pressures measured in the waste above the leachate level increase with depth. During the leachate pumping test, the temperature and gas pressure increase in the leachate level decreasing zone. When the leachate level has stably recovered, the temperature decreases slightly and gas pressure in this zone decreases to nearly zero. In addition, the MSW permeability of the newly filled MSW layer is calculated.

Graphical Abstract

The variation in the water content caused by the change in the leachate level affected the temperature and gas pressure in the waste. The temperature and gas pressure increased in the leachate level decreasing zone. The gas pressure was collectively affected by the water content and temperature in the waste.

Article Highlights

  • Simultaneous variations of leachate level, temperature and gas pressure were investigated.

  • The multifunctional extraction well and monitoring wells were used to monitor the field data.

  • The highest temperature observed in the waste occurred near the leachate level.

  • The temperature and gas pressure increased in the leachate level decreasing zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmadifar M, Sartaj M, Abdallah M (2016) Investigating the performance of aerobic, semi-aerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J Mater Cycles Waste Manag 18(4):703–714

    Article  CAS  Google Scholar 

  • Al-Thani AA, Beaven RP, White JK (2004) Modelling flow to leachate wells in landfills. Waste Manag 24(3):271–276

    Article  CAS  Google Scholar 

  • Amini HR, Reinhart DR, Mackie KR (2012) Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag 32(2012):305–316

    Article  CAS  Google Scholar 

  • Batali L, Carastoian A, Popa H, Pantel G (2017) Instability phenomena in municipal waste landfill. Numerical modeling in saturated and unsaturated conditions. Energ Proc 112(2017):481–488

    Article  Google Scholar 

  • Bentley HW, Smith SJ, Tang J, Walter GR (2003) A method for estimating the rate of landfill gas generation by measurement and analysis of barometric pressure waves. In: Proceedings of the 18th International Conference on Solid Waste Technology and Management, Philadelphia, USA

  • Blight G (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res 26(5):448–463

    Article  Google Scholar 

  • Bonany JE, Van Geel PJ, Burak GH, Burkan IO (2013) Heat budget for a waste lift placed under freezing conditions at a landfill operated in a northern climate. Waste Manag 33(5):1215–1228

    Article  CAS  Google Scholar 

  • Bouazza A, Nahlawi H, Aylward M (2011) In situ temperature monitoring in an organic-waste landfill cell. J Geotech Geoenviron Eng 137(12):1286–1289

    Article  Google Scholar 

  • Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(02):262–273

    Article  CAS  Google Scholar 

  • Chapuis RP, Chenaf D, Acevedo N, Marcotte D, Chouteau M (2005) Unusual drawdown curves for a pumping test in an unconfined aquifer at Lachenaie, Quebec: field data and numerical modeling. Can Geotech J 42(4):1133–1144

    Article  Google Scholar 

  • Chen YM, Zhan TL, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86–95

    Article  Google Scholar 

  • China Meteorological Administration Public Meteorological Service Center (CMAPMSC) (2016, 2017). http://www.weather.com.cn/. Accessed 18 Jan 2016–18 Jun 2017

  • Collins F, Orpen D, Mcnamara E, Fay C, Diamond D (2013) Landfill gas monitoring network: development of wireless sensor network platforms. In: Proceedings of the 2nd International Conference on Sensor Networks, Limerick, Ireland

  • Dho NY, Koo JK, Lee SR (2002) Prediction of leachate level in Kimpo metropolitan landfill site by total water balance. Environ Monit Assess 73(3):207–219

    Article  CAS  Google Scholar 

  • El-Fadel M (1999) Leachate recirculation effects on settlement and biodegradation rates in MSW landfills. Environ Tech Lett 20(2):121–133

    Article  CAS  Google Scholar 

  • Faitli J, Erdelyi A, Kontra J, Magyar T, Varfalvi J, Muranyi A (2015) Pilot scale decomposition heat extraction and utilization system built into the “Gyal Municipal Solid Waste Landfill”. In: Proceedings of 15th International Waste Management and Landfill Symposium, Cagliari, Italy

  • Feng SJ, Zheng QT, Xie HJ (2015) A model for gas pressure in layered landfills with horizontal gas collection systems. Comput Geotech 68(6):117–127

    Article  Google Scholar 

  • Feng SJ, Gao KW, Chen YX, Li Y, Zhang LM, Chen HX (2017) Geotechnical properties of municipal solid waste at Laogang landfill, China. Waste Manag 63(2017):354–365

    Article  CAS  Google Scholar 

  • Findikakis AN, Papelis C, Halvadakis CP, Leckie JO (1988) Modelling gas production in managed sanitary landfills. Waste Manag Res 6(2):115–123

    Article  CAS  Google Scholar 

  • Gallagher EM, Tonks DM, Shevelan J, Belton AR, Blackmore ER (2016) Investigations of geomembrane integrity within a 25-year old landfill capping. Geotext Geomembr 44(5):770–780

    Article  Google Scholar 

  • Gebert J, Groengroeft A (2006) Passive landfill gas emission—influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Manag 26(3):245–251

    Article  CAS  Google Scholar 

  • Gholamifard S, Eymard R, Duquennoi C (2008) Modeling anaerobic bioreactor landfills in methanogenic phase: long term and short term behaviors. Water Res 42(20):5061–5071

    Article  CAS  Google Scholar 

  • Giri RK, Reddy KR (2014) Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions. Waste Manag Res 32(3):186–197

    Article  Google Scholar 

  • Hanson J, Yesiller N, Howard KA, Liu WL, Cooper SP (2006) Effects of placement conditions on decomposition of municipal solid wastes in cold regions. In: Proceedings of the 13th International Conference on Cold Regions Engineering, Orono, Maine, USA

  • Hanson JL, Liu WL, Yesiller N (2008) Analytical and numerical methodology for modeling temperatures in landfills. Geotechnics of waste management and remediation, ASCE GSP 177, Reston, USA

  • Hanson JL, Yesiller N, Oettle NK (2010) Spatial and temporal temperature distributions in municipal solid waste landfills. J Environ Eng 136(8):804–814

    Article  CAS  Google Scholar 

  • Hanson JL, Yesiller N, Onnen MT, Liu LW, Oettle NK (2013) Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Manag 33:1993–2000

    Article  Google Scholar 

  • Hao Z, Sun M, Ducoste JJ, Benson CH, Luettich S, Castaldi MJ, Barlaz MA (2017) Heat generation and accumulation in municipal solid waste landfills. Environ Sci Technol 51(21):12434–12442

    Article  CAS  Google Scholar 

  • Hartz KE, Klink RE, Ham RK (1982) Temperature effects: methane generation from landfill samples. J Environ Eng Div 108(4):629–638

    CAS  Google Scholar 

  • Hashemi M, Kavak HI, Tsotsis TT, Sahimi M (2002) Computer simulation of gas generation and transport in landfills-I: quasi-steady-state condition. Chem Eng Sci 57(13):2475–2501

    Article  CAS  Google Scholar 

  • Jafari NH, Stark TD, Thalhamer T (2017) Progression of elevated temperatures in municipal solid waste landfills. J Geotech Geoenviron Eng 143(8):05017004

    Article  Google Scholar 

  • Jang YS (2000) Analysis of flow behavior in a landfill with cover soil of low hydraulic conductivity. Environ Geol 39(3–4):292–298

    Article  Google Scholar 

  • Jang YS, Kim YI (2003) Behavior of a municipal landfill from field measurement data during a waste-disposal period. Environ Geol 44(5):592–598

    Article  Google Scholar 

  • Jones LD, Lemar T, Tsai CT (1992) Results of two pumping tests in Wisconsin age weathered till in Iowa. Ground Water 30(4):529–538

    Article  Google Scholar 

  • Jung Y, Imhoff P, Finsterle S (2011) Estimation of landfill gas generation rate and gas permeability field of refuse using inverse modeling. Transp Porous Med 90(1):41–58

    Article  CAS  Google Scholar 

  • Kadambala R, Townsend TG, Jain P, Singh K (2011) Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well. Int J Environ Res Publ Health 8(5):1692–1706

    Article  Google Scholar 

  • Kadambala R, Powell J, Singh K, Townsend TG (2016) Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills. Waste Manag Res 34(12):1300–1306

    Article  Google Scholar 

  • Kasali GB (1986) Optimisation and control of methanogenesis in refuse fractions. Ph. D. Thesis, University of Strathclyde, Glasgow, UK

  • Kjeldsen P, Fischer EV (1995) Landfill gas migration-field investigations at Skellingsted landfill, Denmark. Waste Manag Res 13(5):467–484

    Article  CAS  Google Scholar 

  • Ko JH, Powell J, Jain P, Kim HD, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Hazard Toxic Radioact Waste 17(4):351–359

    Article  CAS  Google Scholar 

  • Koerner GR, Koerner RM (2006) Long-term temperature monitoring of geomembranes at dry and wet landfills. Geotext Geomembr 24(1):72–77

    Article  Google Scholar 

  • Koerner RM, Soong TY (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18(5):293–309

    Article  Google Scholar 

  • Krushelnitzky RP, Brachman RWI (2013) Buried high-density polyethylene pipe deflections at elevated temperatures. Geotext Geomembr 40(5):69–77

    Article  Google Scholar 

  • Larson J, Kumar S, Gale SA, Jain P, Townsend T (2012) A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model. Waste Manag Res 30(3):276–284

    Article  Google Scholar 

  • Lee J, Lee C, Lee K (2002) Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management. Environ Geol 42(8):945–954

    Article  CAS  Google Scholar 

  • Lee JY, Cheon JY, Kwon HP, Yoon HS, Lee SS, Kim JH, Kim CG (2006) Attenuation of landfill leachate at two uncontrolled landfills. Environ Geol 51(4):581–593

    Article  CAS  Google Scholar 

  • Lefebvre X, Lanini S, Houi D (2000) The role of aerobic activity on refuse temperature rise, I, Landfill experimental study. Waste Manag Res 18(5):444–452

    Article  Google Scholar 

  • Liu XD, Shi JY, Qian XD, Hu YD, Peng GX (2011) One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Manag 31(12):2473–2483

    Article  CAS  Google Scholar 

  • Liu L, Xue Q, Zeng G, Ma J, Liang B (2016) Field-scale monitoring test of aeration for enhancing biodegradation in an old landfill in China. Environ Prog Sustain Energy 35(2):380–385

    Article  CAS  Google Scholar 

  • Liu L, Ma J, Xue Q, Zeng G, Zhao Y (2017) The viability of design and operation of the air injection well for improvement in situ repair capacity in landfill. Environ Prog Sustain Energy 36(2):412–419

    Article  CAS  Google Scholar 

  • Lu AH, Kunz CO (1981) Gas-flow model to determine methane production at sanitary landfills. Environ Sci Technol 15(4):436–440

    Article  CAS  Google Scholar 

  • Mahar RB, Sahito AR, Yue D, Khan K (2016) Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Front Environ Sci Eng 10(1):159–167

    Article  CAS  Google Scholar 

  • Marco D, Andrea Z, Fausto C (2018) Oscillatory pumping test to estimate aquifer hydraulic parameters in a Bayesian geostatistical framework. Math Geosci 50(2):169–186

    Article  Google Scholar 

  • Martin S, Maranon E, Sastre H (1997) Landfill gas extraction technology: study, simulation and manually controlled extraction. Bioresour Technol 62(1–2):47–54

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Martinez-Viturtia A (1986) Laboratory simulation of municipal solid waste fermentation with leachate recycle. J Chem Technol Biotechnol 36(12):547–556

    Article  CAS  Google Scholar 

  • Mehta R, Barlaz MA, Yazdani R, Augenstein D, Bryars M, Sinderson L (2002) Refuse decomposition in the presence and absence of leachate recirculation. J Environ Eng 128(3):228–236

    Article  CAS  Google Scholar 

  • Ministry of Water Resources of the People’s Republic of China (MWR) (2005) Borehole pumping test procedures for water resources and hydropower engineering SL 320-2005. China Water Power Press, Beijing

    Google Scholar 

  • Niemann WL, Rovey CW (2000) Comparison of hydraulic conductivity values obtained from aquifer pumping tests and conservative tracer tests. Ground Water Monit Remediat 20(3):122–128

    Article  Google Scholar 

  • Olivier F, Gourc JP (2007) Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell. Waste Manag 27(1):44–58

    Article  Google Scholar 

  • Olivier F, Oxarango L, Mugnier V, Tinet AJ, Marcoux MA (2009) Estimating the drawdown of leachate in a saturated landfill: 3D modeling based on field pumping tests. In: Proceedings of the 12th International Waste Management and Landfill Symposium, S. Margherita di Pula, CISA, Cagliari, Italy

  • Oweis IS, Smith DA, Ellwood RB, Greene DS (1990) Hydraulic characteristics of municipal refuse. J Geotech Eng 116(4):539–553

    Article  Google Scholar 

  • Powell J (2005) Trace gas quality, temperature control and extent of influence from air addition at a bioreactor landfill. Master Thesis, University of Florida, Gainesville, Florida, USA

  • Powell JT, Townsend TG, Zimmerman JB (2015) Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat Clim Change 6(2):162–165

    Article  Google Scholar 

  • Qian XD, Shi JY, Liu XD (2011) Design and construction of modern sanitary landfill, 2nd edn. China Architecture and Building Press, Beijing

    Google Scholar 

  • Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952–959

    Article  Google Scholar 

  • Rees JF (1980) Optimisation of methane production and refuse decomposition in landfills by temperature control. J Chem Tech Biotechnol 30(1):458–465

    Article  CAS  Google Scholar 

  • Reinhart D, Cooper D, Walker B (1992) Flux chamber design and operation for the measurement of municipal solid waste landfill gas emission rates. Air Repair 42(8):1067–1070

    CAS  Google Scholar 

  • Rowe RK, Nadarajah P (1996) Estimating leachate drawdown due to pumping wells in landfills. Can Geotech J 33(1):1–10

    Article  Google Scholar 

  • Shank KL (1993) Determination of the hydraulic conductivity of the Alachua county southwest landfill. Master Thesis, University of Florida, Gainesville, USA

  • Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015) Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput Geotech 68(7):196–207

    Article  Google Scholar 

  • Shi JY, Wu X, Ai YB, Zhang Z (2018) Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste. Waste Manag Res 36(5):463–470

    Article  CAS  Google Scholar 

  • Slimani R, Oxarango L, Sbartai B, Tinet AJ, Olivier F, Dias D (2017) Leachate flow around a well in MSW landfill: analysis of field tests using Richards model. Waste Manag 63(2017):122–130

    Article  CAS  Google Scholar 

  • Spokas KA, Bogner JE (1996) Field system for continuous measurement of landfill gas pressures and temperatures. Waste Manag Res 14(3):233–242

    Article  Google Scholar 

  • Stevens WD (2012) An empirical analysis of gas well design and pumping tests for retrofitting landfill gas collection. Master Thesis, University of Saskatchewan, Saskatoon, Canada

  • Tchobanoglous G, Theisen H, Eliassen R (1977) Solid wastes: engineering principles and management issues. Mcgraw-Hill, Toronto

    Google Scholar 

  • Townsend TG, Miller WL, Lee HJ, Earle JFK (1996) Acceleration of landfill stabilization using leachate recycle. J Environ Eng 122(4):263–268

    Article  CAS  Google Scholar 

  • Townsend TG, Wise WR, Jain P (2005) One-Dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. J Environ Eng 131(12):1716–1723

    Article  CAS  Google Scholar 

  • Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Sustainable practices for landfill design and operation. Waste Management Principles and Practice. Springer, New York

    Book  Google Scholar 

  • Vaverkova M, Adamcova D (2015) Long-term temperature monitoring of municipal solid waste landfill. Pol J Environ Stud 24(3):1373–1378

    Article  Google Scholar 

  • Wu YX, Shen JS, Chen WC, Hino T (2017) Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng Geol 226(2017):44–51

    Article  Google Scholar 

  • Yesiller N, Hanson JL (2003) Analysis of temperatures at a municipal solid waste landfill. In: Proceedings of the 9th International Waste Management and Landfill Symposium, Christensen et al (eds), CISA, Sardinia, Italy

  • Yesiller N, Hanson JL, Yee EH (2015) Waste heat generation: a comprehensive review. Waste Manag 42(2015):166–179

    Article  Google Scholar 

  • Yesiller N, Hanson JL, Kopp KB (2016) The design and installation of a prototype heat extraction system at a municipal solid waste landfill. Geo-Chicago: Sustainability, Energy and the Geoenvironment, Chicago, USA

  • Yoshida H, Rowe RK (2003) Consideration of landfill liner temperature. In: Proceedings of the 9th International Waste Management and Landfill Symposium, S. Margherita di Pula, CISA, Cagliari, Italy

  • Yuen STS, Wang QJ, Styles JR, Mcmahon TA (2001) Water balance comparison between a dry and a wet landfill—a full-scale experiment. J Hydrol 251(1–2):29–48

    Article  Google Scholar 

  • Zhan LT, Hui XU, Lan JW, Zhao L, Chen YM (2014) Field and laboratory study on hydraulic characteristics of MSWs. J Zhejiang Univ (Eng Sci E) 48(3):478–486 (in Chinese)

    Google Scholar 

  • Zhan LT, Xu XB, Chen YM, Ma XF, Lan JW (2015) Dependence of gas collection efficiency on leachate level at wet municipal solid waste landfills and its improvement methods in China. J Geotech Geoenviron Eng 141(4):040150021

    Google Scholar 

  • Zhang T (2017) Temperature monitoring during water injection test using vertical well in a newly filled MSW layer of a landfill. Research Report, Hohai University, Nanjing, China, (in Chinese)

Download references

Acknowledgements

The authors express their appreciation to Leslie Okine for checking and revising the language of this paper, and appreciate the financial support provided by the National Natural Science Foundation of China (No. 41530637, No. 41372268 and No. 41877222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Shi, J., Qian, X. et al. Temperature and Gas Pressure Monitoring and Leachate Pumping Tests in a Newly Filled MSW Layer of a Landfill. Int J Environ Res 13, 1–19 (2019). https://doi.org/10.1007/s41742-018-0157-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0157-0

Keywords

Navigation