Skip to main content
Log in

Improvement of Carbamazepine Degradation by a Three-Dimensional Electrochemical (3-EC) Process

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Removal of carbamazepine (CBZ) was evaluated and studied during the oxidation by the three-dimensional electrochemical process (3-EC) compared to two-dimensional (2-EC) electrochemical process. The pilot tests were performed using two experimental units[one with powder of activated carbon (PAC) as particle electrode and the other without PAC] containing one anode (aluminum, alloy 1050) and one cathode (Al). Different operating parameters, including PAC concentration, current density, initial CBZ concentration, and reaction time were investigated. Both the removal efficiency and current efficiency increased when the current density was 9 mAcm−2, whereas it increased with rising the PAC concentration. The highest value of the removal efficiency (89.8%) was recorded for the optimum current density (9 mAcm−2), the PAC concentration (0.5 gL−1), and 10 min electrolysis time in the 3-EC process. The PAC concentration was the preponderant factor for CBZ removal. In comparison, the highest removal efficiency was 29.8% for the 2-EC process. Scavenger addition method was used to describe the mechanism, and found that superoxides are increased in 3-EC process. On the other hand, adsorption did not play any role in the degradation of CBZ in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2-EC:

Two-dimensional electrochemical

3-EC:

Three-dimensional electrochemical

AOPs:

Advanced oxidation processes

BDD:

Boron-doped diamond

CBZ:

Carbamazepine

COD:

Chemical oxygen demand

GAC:

Granular activated carbon

PAC:

Powder of activated carbon

STP:

Sewage treatment plant

TOC:

Total organic carbon

References

  • Aminot Y, Le Menach K, Pardon P, Etcheber H, Budzinski H (2016) Inputs and seasonal removal of pharmaceuticals in the estuarine Garonne River. Mar Chem 185:3–11

    Article  CAS  Google Scholar 

  • Backhurst J, Coulson J, Goodridge F, Plimley R, Fleischmann M (1969) A preliminary investigation of fluidized bed electrodes. J Electrochem Soc 116:1600–1607

    Article  Google Scholar 

  • Bansal RC, Donnet JB, Stoeckli F (1998) Active carbon. Marcel Dekker, New York

    Google Scholar 

  • Besnault S, Martin Ruel S, Baig S et al (2014) Technical, economic and environmental evaluation of advanced tertiary treatments for micropollutants removal (oxidation and adsorption). ECOSTP no. IWA, Verona

    Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73(4):627–637

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I (2015) Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. Trends Anal Chem 70:112–121

    Article  CAS  Google Scholar 

  • Chen YX, Yang SY, Wang K, Lou LP (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J Photochem Photobiol A Chem 172:47–54

    Article  CAS  Google Scholar 

  • Chen F, Yu S, Dong X, Zhang S (2012) High-efficient treatment of wastewater contained the carcinogen naphthylamine by electrochemical oxidation with γ-Al2O3 supported MnO2 and Sb-doped SnO2 catalyst. J Hazard Mater 227:474–479

    Article  CAS  Google Scholar 

  • Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81(5):594–602

    Article  CAS  Google Scholar 

  • Domínguez JR, González T, Palo P, Sánchez-Martín J (2010) Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. Influence of operating variables. Ind Eng Chem Res 49:8353–8359

    Article  CAS  Google Scholar 

  • Drewes J, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable reuse. Water Sci Technol 46:73–80

    Article  CAS  Google Scholar 

  • Fortuny A, Font J, Fabregat A (1998) Wet air oxidation of phenol using active carbon as catalyst. Appl Catal B 19:165–173

    Article  CAS  Google Scholar 

  • Garbellini G, Salazar-Banda G, Avaca L (2010) Effects of ultrasound on the degradation of pentachlorophenol by boron-doped diamond electrodes. Port Electrochim Acta 28(6):405–415

    Article  CAS  Google Scholar 

  • García-Espinoza JD, Mijaylova-Nacheva P, Avilés-Flores M (2018) Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 192:142–150

    Article  CAS  Google Scholar 

  • García-Gómez C, Drogu P, Zaviska F et al (2014) Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. J Electroanal Chem 732:1–10

    Article  CAS  Google Scholar 

  • Ghodbane I, Nouri L, Hamdaoui O, Chiha M (2008) Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J Hazard Mater 152:148–158

    Article  CAS  Google Scholar 

  • Gómez M, Martı´nez Bueno M, Lacorte S, Fernandez-Alba A, Aguera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002

    Article  CAS  Google Scholar 

  • Guoting L, Wong K, Zhang X, Hu C et al (2009) Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1190

    Article  CAS  Google Scholar 

  • He Y, Dong Y, Huang W, Tang X, Liu H, Lin H, Li H (2015) Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug. J Electroanal Chem 759(2):167–173

    Article  CAS  Google Scholar 

  • Komtchou S, Dirany A, Drogui P, Bermond A (2015) Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Eniviron Sci Pollut Res 22(15):11513–11525

    Article  CAS  Google Scholar 

  • Korbahti B, Aktas N, Tanyolac A (2007) Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J Hazard Mater 148(1–2):83–90

    Article  CAS  Google Scholar 

  • Lan Y, Coetsier C, Causserand C, Serrano KG (2017) On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta 231:309–318

    Article  CAS  Google Scholar 

  • Li P, Zhao Y, Wang L, Ding B, Hu Y, Yan Q (2014) A novel packed-bed electrocatalysis reactor (PBECR) for efficient degradation of organic compounds. Electrochemistry 82(12):1056–1060

    Article  CAS  Google Scholar 

  • Li M, Zhao F, Sillanpää M, Meng Y, Yin D (2015) Electrochemical degradation of 2-diethylamino-6-methyl-4-hydroxypyrimidine using three-dimensional electrodes reactor with ceramic particle electrodes. Sep Purif Technol 156:588–595

    Article  CAS  Google Scholar 

  • Lindsey M, Meyer M, Thurman E (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73(19):4640–4646

    Article  CAS  Google Scholar 

  • Ma H, Zhuo Q, Wang B (2009) Electro-catalytic degradation of methylene blue wastewater assisted by Fe2O3-modified kaolin. Chem Eng J 155(1):248–253

    Article  CAS  Google Scholar 

  • Mendoza A, Zonja B, Mastroianni N, Negreira N, López de Alda M, Pérez S, Barceló D, Gil A, Valcárcel Y (2016) Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain): a case study to analyse their occurrence and human health risk characterization. Environ Int 86:107–118

    Article  CAS  Google Scholar 

  • Meyer W, Reich M, Beier S, Behrendt J, Gulyas H, Otterpohl R (2016) Measured and predicted environmental concentrations of carbamazepine, diclofenac, and metoprolol in small and medium rivers in northern Germany. Environ Monit Assess 188(8):1–16

    Article  CAS  Google Scholar 

  • Misra R, Neti NN, Dionysiou DD, Tandekar M, Kanade GS (2015) Novel integrated carbon particle based three dimensional anodes for the electrochemical degradation of reactive dyes. Res Adv 5(14):10799–10808

    CAS  Google Scholar 

  • Monsalvo VM, Lopez J, Munoz M, de Pedro ZM, Casas JA, Mohedano AF, Rodriguez JJ (2015) Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chem Eng J 264:856–862

    Article  CAS  Google Scholar 

  • Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Heterogeneous Fenton catalysts based on activated carbon and related materials. Chemsuschem 4(12):1712–1730

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569

    Article  CAS  Google Scholar 

  • Pavia D, Lampman GM, Kriz GS (2009) Introduction to spectroscopy. Brooks/Cole Cengagar Learning, Belmont

    Google Scholar 

  • Saien KSJ (2008) Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: optimization, kinetics and toxicity studies. J Hazard Mater 157:269–276

    Article  CAS  Google Scholar 

  • Singh S, Singh S, Lo SL, Kumar N (2016) Electrochemical treatment of Ayurveda pharmaceuticals wastewater: optimization and characterization of sludge residue. J Taiwan Inst Chem Eng 67:385–396

    Article  CAS  Google Scholar 

  • Ternes TA, Joss A (2006) Consumption and occurrence. In: Ternes TA, Joss A (eds) Human pharmaceuticals, hormones and fragrances. The challenge of micropollutants in Urban Water Management. IWA Publishing, London

    Google Scholar 

  • Tran N, Drogui P, Brar SK, De Coninck A (2017) Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant. Ultrason Sonochem 34:380–388

    Article  CAS  Google Scholar 

  • USDA: United States Department of Agriculture (2008) World agricultural supply and demand estimates. WASDE 464:1–40

    Google Scholar 

  • Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Sci Total Environ 538:750–767

    Article  CAS  Google Scholar 

  • Verma S, Raj Kumar D (2017) Enhanced ROS generation by ZnO–ammonia modified graphene oxide nanocomposites for photocatalytic degradation of trypan blue dye and 4-nitrophenol. J Environ Chem Eng 5(5):4776–4787

    Article  CAS  Google Scholar 

  • Wei L, Guo S, Yan G, Chen C, Jiang X (2010) Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochim Acta 55:8615–8620

    Article  CAS  Google Scholar 

  • Wu Z, Cong Y, Zhou M, Tan TE (2005) p-Nitrophenol abatement by the combination of electrocatalysis and activated carbon. Chem Eng J 106(1):83–90

    Article  CAS  Google Scholar 

  • Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng 228:455–467

    Article  CAS  Google Scholar 

  • Zheng T, Wang Q, Shi Z, Fang Y, Shi S, Wang J, Wu C (2016) Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation. J Environ Sci 50(12):21–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Alighardashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alighardashi, A., Aghta, R.S. & Ebrahimzadeh, H. Improvement of Carbamazepine Degradation by a Three-Dimensional Electrochemical (3-EC) Process. Int J Environ Res 12, 451–458 (2018). https://doi.org/10.1007/s41742-018-0102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0102-2

Keywords

Navigation