Skip to main content
Log in

Acid Rain Deposition Modulates Photosynthesis, Enzymatic and Non-enzymatic Antioxidant Activities in Tomato

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Acid rain is one of the serious environmental issues causing morphological and physiological changes in plants. However, the impact of acid rain to vegetable crops remains indescribable. This study explored the effects of two pH levels of simulated acid rain (SAR) on photosynthesis and activity of different enzymatic and non-enzymatic key antioxidant compounds compared with control in two different tomato cultivars. With the increasing levels of acidity of SAR, decreased significantly the plant growth, chlorophyll, carotenoids, soluble protein and soluble sugar contents in leaves of both tomato cultivars but decreased percentages were more in Red Rain than Micro-Tom cultivar of tomato. Different enzymatic antioxidant key compounds accumulation was the maximum at pH 3.5 and degraded at pH 2.5 of SAR treatment for both tomato cultivars. In contrast, the growth of hydrogen peroxide (H2O2), malondialdehyde (MDA) and proline content was increased by SAR treatment which depends on the level of pH value of SAR. In addition, marked increase in phenolic, flavonoid and reducing antioxidant activity was found at pH 3.5 followed by pH 2.5 of SAR and control in both tomato cultivars. Our findings suggested that the tomato seedlings produced more reactive oxygen species (ROS) scavenging enzymatic and non-enzymatic antioxidant compounds to SAR stress at 3.5 pH level. Meanwhile, the inhibition of growth as well as photosynthesis of tomato seedlings and the severity of oxidative damage were found at pH 2.5 of SAR which might be depend on the types of cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE 8(10):e77869

    Article  CAS  Google Scholar 

  • Al Hassan M, Fuertes MM, Sanchez FJR, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not Bot Horti Agrobot Cluj-Napoca 43(1):1

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50(1):601–639

    Article  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  Google Scholar 

  • Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2011) Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol Plant 33(4):1103–1111

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bouwman AF, Vuuren DPV, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141(1–4):349–382

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72((s 1–2)):248–254

    Article  CAS  Google Scholar 

  • Chen J, Li W, Gao F (2010) Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China. J Environ Monit Jem 12(10):1799–1806

    Article  CAS  Google Scholar 

  • Chen J, Wang W-H, Liu T-W, Wu F-H, Zheng H-L (2013) Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol Biochem 64:41–51

    Article  CAS  Google Scholar 

  • Croft H, Chen J, Zhang Y (2014) The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol Complexity 17:119–130

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers Environ Sci 2(53):53

    Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Gholamhoseini M, Joghan AK, Majdi M, Kashkooli AB (2013) The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiol Mol Biol Plants 19(2):189–198

    Article  CAS  Google Scholar 

  • Evans LS (1984) Botanical aspects of acidic precipitation. Bot Rev 50(4):449–490

    Article  Google Scholar 

  • Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29(5):485

    Article  CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30(1):11

    Article  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosys 143(1):81–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Halman JM, Schaberg PG, Hawley GJ, Eagar C (2008) Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens). Tree Physiol 28(6):855–862

    Article  CAS  Google Scholar 

  • Hamid N, Jawaid F (2009) Effect of short-term exposure of two different concentrations of sulphur dioxide and nitrogen dioxide mixture on some biochemical parameter of soybean (Glycine max (L.) Merr.). Pak J Bot 41(5):2223-2228

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  • Hu H, Wang L, Liao C, Fan C, Zhou Q, Huang X (2014) Combined effects of lead and acid rain on photosynthesis in soybean seedlings. Biol Trace Elem Res 161(1):136–142

    Article  CAS  Google Scholar 

  • Kholová J, Sairam R, Meena R, Srivastava G (2009) Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol Plant 53(2):249–256

    Article  Google Scholar 

  • Kita I, Sato T, Kase Y, Mitropoulos P (2004) Neutral rains at Athens, Greece: a natural safeguard against acidification of rains. Sci Total Environ 327(1):285–294

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M, Stork F, Hedbavny J (2011) Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology 20(2):348–357

    Article  Google Scholar 

  • Kováčik J, Klejdus B, Štork F, Hedbavny J (2012) Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application. J Hazard Mater 239:175–182

    Article  Google Scholar 

  • Li Y (2009) Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Mod Appl Sci 3(3):171

    Article  CAS  Google Scholar 

  • Liang C, Wang W (2013) Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ Sci Pollut Res 20(11):8182–8191

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited, London, UK

    Google Scholar 

  • Liu J, Zhou G, Yang C, Ou Z, Peng C (2007) Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. & Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China. Acta Physiol Plant 29(1):33–38

    Article  Google Scholar 

  • Liu T-W, Wu F-H, Wang W-H, Chen J, Li Z-J, Dong X-J, Patton J, Pei Z-M, Zheng H-L (2011) Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiol 31(4):402–413

    Article  Google Scholar 

  • Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL (2013) A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome 56(1):49–60

    Article  CAS  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71(5):605–613

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  Google Scholar 

  • Moyle L (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62(12):2995–3013

    Article  Google Scholar 

  • Neves NR, Oliva MA, Da CCD, Costa AC, Ribas RF, Pereira EG (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. Sci Total Environ 407(12):3740–3745

  • Ordonez A, Gomez J, Vattuone M (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97(3):452–458

    Article  CAS  Google Scholar 

  • Pan T, Li Y, Ma C, Qiu D (2015) Calcium affecting protein expression in longan under simulated acid rain stress. Environ Sci Pollut Res 22(16):12215–12223

    Article  CAS  Google Scholar 

  • Polishchuk AV, Vodka MV, Belyavskaya NA, Khomochkin AP, Zolotareva EK (2016) The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell Tissue Biol 10(3):250–257

    Article  Google Scholar 

  • Posmyk M, Kontek R, Janas K (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72(2):596–602

    Article  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integ Plant Biol 50(1):2–18

    Article  CAS  Google Scholar 

  • Shereefa LAH, Kumaraswamy M (2016) Reactive oxygen species and ascorbate–glutathione interplay in signaling and stress responses in Sesamum orientale L. against Alternaria sesami (Kawamura) Mohanty and Behera. J Saudi Soc Agril Sci 15(1):48-56

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48(2):127–135

    Article  CAS  Google Scholar 

  • Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89(2):191–198

    Article  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a Fluorescence 19:321–362

  • Sun Z, Wang L, Chen M, Wang L, Liang C, Zhou Q, Huang X (2012) Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicol Environ Saf 79(4):62

    Article  CAS  Google Scholar 

  • Tausz M, Hietz P, Briones O (2001) The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. Funct Plant Biol 28(8):775–783

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wen K, Liang C, Wang L, Hu G, Zhou Q (2011) Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84(5):601–608

    Article  CAS  Google Scholar 

  • Wyrwicka A, Skłodowska M (2006) Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environ Exp Bot 56(2):198–204

    Article  CAS  Google Scholar 

  • Xu RK, Ji GL (2001) Effects of H2SO4 and HNO3 on soil acidification and aluminum speciation in variable and constant charge soils. Water Air Soil Pollut 129(1–4):33–43

    Article  CAS  Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    Article  CAS  Google Scholar 

  • Yuan X, Yang Z, Li Y, Liu Q, Han W (2016) Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 54(1):28–39

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Zhao Z, Chen Y, Dou W (2005) Effects of simulated acid rain on physiological and biochemical characters of eggplant, the host plant of Tetranychus cinnabarinus. Ying yong sheng tai xue bao. J Appl Ecol 16(3):450–454

  • Zhang Y, Zhang L, Hu X-H (2014) Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition. Bot Stud 55(1):58

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Yueting Sun, Xiaocao Lu for their helpful assistance in purchasing reagents. This study was supported by the National Natural Science Grant of China (Award no. 30400061), Natural Science Foundation of Fujian Province, China (2011J01082) and Special Fund for Science and Technology Innovation of FAFU (CXZX2016107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Irshad, M., Mitra, S. et al. Acid Rain Deposition Modulates Photosynthesis, Enzymatic and Non-enzymatic Antioxidant Activities in Tomato. Int J Environ Res 12, 203–214 (2018). https://doi.org/10.1007/s41742-018-0084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0084-0

Keywords

Navigation