Skip to main content
Log in

Tax competition with spillover public goods in a median location model

  • In Honor of Shin-Kun Peng
  • Published:
Asia-Pacific Journal of Regional Science Aims and scope Submit manuscript

Abstract

This study explores the role of median location in a core-periphery model (using a footloose entrepreneur version) with public goods. Taxation for each region is used for producing public good with spillovers effect among regions. Two kinds of taxation are considered. One is the Nash tax with the goal of each region’s utility. The other is the optimal taxation with the goal of the sum of each region’s utility. Two kinds of location configurations for three regions are considered: one is an equilateral triangle (with no median location). The other is the configuration in which three points are equidistant between two adjacent points on a line (with median region). The results show that the Nash tax rate of median region will be smaller than that of non-median region for a symmetric distribution of firms. On the contrary, the optimal tax of median region will be higher than that of non-median region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The details for solving the Nash tax for each region in both scenarios are provided in “Appendix B”.

  2. For example, for the case of \(h_{2} = 1\), and \(h_{1} = h_{3} = 0\), this full agglomeration in region 2 yields \(w_{2} = \mu L/[H\left( {\sigma - \mu } \right)]\), \(Y_{2} = L\left( {\frac{1}{3} + \frac{\mu }{\sigma - \mu }} \right)\), \(P_{1} = P_{3} ,Y_{1} = Y_{3} = \frac{L}{3}\), \(\frac{{P_{1} }}{{P_{2} }} = \phi^{1/(1 - \sigma )}\). It is then obtained that \(\frac{{Y_{1} P_{1}^{ - \mu } }}{{Y_{2} P_{2}^{ - \mu } }} < 1\). Comparing the Nash tax rate of each region in (53), it is verified that \(t_{2} > t_{1} = t_{3}\).

  3. This result is obtained for symmetric cases by numerical simulation for \(\mu = 0.4\), \(\sigma = 4\), \(\beta = 0.1\), \(\alpha = 1\), and \(\tau = 5\).

References

  • Ago T, Isono I, Tabuchi T (2006) Locational disadvantage of the hub. Ann Reg Sci 40:819–848

    Article  Google Scholar 

  • Andersson F, Forslid R (2003) Tax competition and economic geography. J Public Econ Theory 5:279–303

    Article  Google Scholar 

  • Baldwin R, Krugman P (2004) Agglomeration, integration and tax harmonization. Reg Sci Urban Econ 48:1–23

    Google Scholar 

  • Baldwin R, Okubo T (2009) Tax reform, delocation, and heterogeneous firms. Scand J Econ 111:741–764

    Article  Google Scholar 

  • Baldwin R, Okubo T (2014) Tax competition with heterogeneous firms. Spat Econ Anal 9:309–326

    Article  Google Scholar 

  • Bauer C, Davies R, Haufler A (2014) Economic integration and the optimal corporate tax structure with heterogeneous firms. J Public Econ 110:42–56

    Article  Google Scholar 

  • Becker J, Fuest C (2011) Optimal tax policy when firms are internationally mobile. Int Tax Public Financ 18:580–604

    Article  Google Scholar 

  • Bloch F, Zenginobuz E (2006) Tiebout equilibria in local public good economies with spillovers. J Public Econ 90:1745–1763

    Article  Google Scholar 

  • Castro S, Correia-da-Silva J, Mossay P (2012) The core-periphery model with three regions and more. Pap Reg Sci 91:401–418

    Google Scholar 

  • Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. Am Econ Rev 67(3):297–308

    Google Scholar 

  • Forslid R, Okubo T (2012) On the development strategy of countries of intermediate size—an analysis of heterogeneous firms in a multi-region framework. Eur Econ Rev 56(4):747–756

    Article  Google Scholar 

  • Forslid R, Ottaviano G (2003) An analytically solvable core-periphery model. J Econ Geogr 3:229–240

    Article  Google Scholar 

  • Gaspar JM, Castro S, Correia-da-Silva J (2018) Agglomeration patterns in a multi-regional economy without income effects. Econ Theor 66:863–899

    Article  Google Scholar 

  • Haufler A, Stähler F (2013) Tax competition in a simple model with heterogeneous firms: how larger markets reduce profit taxes. Int Econ Rev 54:665–692

    Article  Google Scholar 

  • Kato H, Okubo T (2018) Market size and globalization. J Int Econ 111:34–60

    Article  Google Scholar 

  • Kind HJ, Knarivk KHM, Schjelderup G (2000) Competing for capital in a ‘lumpy’ world. J Public Econ 78:253–274

    Article  Google Scholar 

  • Krugman PR (1991) Increasing returns and economic geography. J Polit Econ 99:483–499

    Article  Google Scholar 

  • Ludema R, Wooton I (2000) Economic geography and the fiscal effects of regional integration. J Int Econ 52:331–357

    Article  Google Scholar 

  • O’Sullivan A (2012) Urban economics, 8th edn. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Ogawa H (2006) Tax competition, spillovers, and subsidies. Ann Reg Sci 40:849–858

    Article  Google Scholar 

  • Riou S (2006) Transfer and tax competition in a system of hierarchical governments. Reg Sci Urban Econ 36:249–269

    Article  Google Scholar 

  • Samuelson P (1954) The transfer problem and transport costs, II: analysis of effects of trade impediments. Econ J 64:264–289

    Article  Google Scholar 

  • Takahashi T (2003) International trade and inefficiency in the location of production. J Jpn Int Econ 17:134–152

    Article  Google Scholar 

  • Tiebout CM (1956) A pure theory of local expenditure. J Polit Econ 64:416–424

    Article  Google Scholar 

  • Weber A (1909) Uber den Standort der industrie. In Germany, translated to theory of location and industries. University of Chicago Press, Chicago (in English in 1929)

    Google Scholar 

  • Wilson JD (1999) Theory of tax competition. Natl Tax J 52:269–304

    Google Scholar 

  • Zodrow G, Mieszkowski P (1986) Pigou, Tiebout, property taxation and the underprovision of local public goods. J Urban Econ 19:356–370

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank two anonymous referees for their helpful suggestions and Xiwei Zhu as well as participants at the 7th Asian Seminar in Regional Science at National Taiwan University in 2017 for their comments. Financial support from the Ministry of Science and Technology, Taiwan (NSC 102-2410-H-305-004-MY2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Fa Tsai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1. Transport costs are infinite (\(\phi = 0\))


Scenario I


When the transport costs are infinite (\(\phi = 0\)), it is found that symmetric configuration \(h_{1} = h_{2} = h_{3} = 1/3\) will yield \(P_{1}^{\mu } = P_{2}^{\mu }\) from (23) and \(w_{1} = w_{2}\) form (45). This ensures this configuration is an equilibrium from (52) with the same tax rate for each region, \(t_{1} = t_{2} = t_{3} = t\). For the stability condition, \({\text{d}}\rho_{21} /{\text{d}}h_{2}\) < 0 is needed when it is evaluated at the symmetric equilibrium point. It is derived that

$$\frac{{\partial \rho_{21} }}{{\partial h_{2} }} = - \frac{{9\left[ {\left( {1 + 2r} \right)\left( {\sigma - \mu - 1} \right) - \delta \mu \left( {1 - r} \right)} \right]}}{{2\left( {2r + 1} \right)\left( {\sigma - 1} \right)}}.$$
(52)

The stability is then obtained as \(\left( {1 + 2r} \right)\left( {\sigma - \mu - 1} \right) - \delta \mu \left( {1 - r} \right) > 0\). This condition will be satisfied as \(\sigma\) is large and \(\mu\) is small.

Scenario II


When the transport costs are infinite (\(\phi = 0)\), suppose that symmetric configuration \(h_{1} = h_{2} = h_{3} = \frac{1}{3}\) is an equilibrium. The wage rate will be the same among regions: \(w_{1} = w_{2} = w_{3}\). Then the real income will also be the same among regions due to the price index in each region will be the same. In addition, the public good provision will be the same among regions: \(g_{1} = g_{2} = g_{3}\) when the tax rates are the same among regions. It then yields that \(G_{2} > G_{1} = G_{3}\) as long as \(r > 0\) from (33) to (37). This implies that \(V_{2} > V_{1} = V_{3}\). We thus conclude the symmetric configuration \(h_{1} = h_{2} = h_{3} = \frac{1}{3}\) is not an equilibrium.

2. Transport costs are zero (\(\phi = 1)\)


Scenario I


When the transport costs are zero (\(\phi = 1)\), the agglomeration is ensured when \(h_{2} = 1\), \(h_{1} = h_{3} = 0\), with the same tax rate and \(\rho_{21}\) > 1 for the agglomeration point. It is derived that

$$\rho_{21} = \left[ {\frac{\sigma + 2r\sigma + 2\mu (1 - r)}{\sigma + 2r\sigma - \mu (1 - r)}} \right]^{\delta } > 1.$$
(53)

Scenario II


When the transport costs are zero (\(\phi = 1)\), the agglomeration at median location is ensured when \(h_{2} = 1\), \(h_{1} = h_{3} = 0\), and \(\rho_{21}\) > 1 for the agglomeration point with the same tax rate. It is derived that

$$\rho_{21} = \left[ {\frac{\sigma + 2r\sigma + 2\mu (1 - r)}{{\sigma + \left( {r + r^{2} } \right)\sigma + \mu r\left( {1 - r} \right) - \mu (1 - r)}}} \right]^{\delta } > 1.$$
(54)

The agglomeration at non-median location is ensured when \(h_{1} = 1\), \(h_{2} = h_{3} = 0\), and \(\rho_{12}\) > 1 for the agglomeration point with the same tax rate. It is derived that

$$\rho_{12} = \left[ {\frac{{\sigma + r\left( {1 + r} \right)\sigma + 2\mu - \mu r(1 + r)}}{\sigma + 2r\sigma + \mu r - \mu }} \right]^{\delta } .$$
(55)

The stability condition is obtained as \(\left( {3 - 2r - r^{2} } \right)\mu - r\left( {1 - r} \right)\sigma > 0\). It is satisfied when \(\mu\) is large and \(\sigma\) is small enough. This condition is very unlikely to be satisfied.

Appendix B

Scenario I

The indirect utility of each region is as follows:

$$V_{1} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {1 - t_{1} } \right)\left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(56)
$$V_{2} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {1 - t_{2} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(57)
$$V_{3} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {1 - t_{3} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } .$$
(58)

To solve the maximum of indirect function of each region is to differentiate \(V_{1}\), \(V_{2}\), and \(V_{3}\) with respect to \(t_{1}\), \(t_{2}\), and \(t_{3}\), respectively.

$$\begin{aligned} \frac{{\partial V_{1} }}{{\partial t_{1} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {t_{1} Y_{1} P_{1}^{ - \mu } } \right.} \right. \\ & \quad \left. {\left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right) + \delta \left( {1 - t_{1} } \right)Y_{1} P_{1}^{ - \mu } } \right], \\ \end{aligned}$$
(59)
$$\begin{aligned} \frac{{\partial V_{2} }}{{\partial t_{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right.} \right. \\ & \quad \left. {\left. { + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right) + \delta \left( {1 - t_{2} } \right)Y_{2} P_{2}^{ - \mu } } \right], \\ \end{aligned}$$
(60)
$$\begin{aligned} \frac{{\partial V_{3} }}{{\partial t_{3} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ - \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right. \right. \\ & \quad \left. \left. + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } \right)+ \delta \left( {1 - t_{3} } \right)Y_{3} P_{3}^{ - \mu } \right]. \end{aligned}$$
(61)

Letting (59)–(61) be zero yields the first-order condition for this problem:

$$\left( {1 + \delta } \right)t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{1} P_{1}^{ - \mu } ,$$
(62)
$$rt_{1} Y_{1} P_{1}^{ - \mu } + \left( {1 + \delta } \right)t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{2} P_{2}^{ - \mu } ,$$
(63)
$$rt_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + \left( {1 + \delta } \right)t_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{3} P_{3}^{ - \mu } .$$
(64)

Solving (62)–(64) yields the Nash tax rate for each region in (48). Note that the second-order condition is satisfied as follows:

$$\begin{aligned} \frac{{\partial^{2} V_{1} }}{{\partial t_{1}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{1} P_{1}^{ - \mu } \left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - \left( {1 + \delta } \right)t_{1} Y_{1} P_{1}^{ - \mu } - rt_{2} Y_{2} P_{2}^{ - \mu } - rt_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{1} P_{1}^{ - \mu } } \right] + \left( {t_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{1} P_{1}^{ - \mu } } \right]} \right\} < 0, \\ \end{aligned}$$
(65)

after substituting (62) into it.

$$\begin{aligned} \frac{{\partial^{2} V_{2} }}{{\partial t_{2}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{2} P_{2}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - rt_{1} Y_{1} P_{1}^{ - \mu } - \left( {1 + \delta } \right)t_{2} Y_{2} P_{2}^{ - \mu } - rt_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{2} P_{2}^{ - \mu } } \right] + \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{2} P_{2}^{ - \mu } } \right]} \right\} < 0, \\ \end{aligned}$$
(66)

after substituting (63) into it.

$$\begin{aligned} \frac{{\partial^{2} V_{3} }}{{\partial t_{3}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{3} P_{3}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - rt_{1} Y_{1} P_{1}^{ - \mu } - rt_{2} Y_{2} P_{2}^{ - \mu } - \left( {1 + \delta } \right)t_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{3} P_{3}^{ - \mu } } \right] + \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{3} P_{3}^{ - \mu } } \right]} \right\} < 0, \\ \end{aligned}$$
(67)

after substituting (64) into it.


Scenario II


The indirect utility of each region is as follows:

$$V_{1} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {1 - t_{1} } \right)\left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(68)
$$V_{2} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {1 - t_{2} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(69)
$$V_{3} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {1 - t_{3} } \right)\left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } .$$
(70)

To solve the maximum of indirect function of each region is to differentiate \(V_{1}\), \(V_{2}\), and \(V_{3}\) with respect to \(t_{1}\), \(t_{2}\), and \(t_{3}\), respectively.

$$\begin{aligned} \frac{{\partial V_{1} }}{{\partial t_{1} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {t_{1} Y_{1} P_{1}^{ - \mu } } \right.} \right. \\ & \quad \left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right) + \left. {\delta \left( {1 - t_{1} } \right)Y_{1} P_{1}^{ - \mu } } \right], \\ \end{aligned}$$
(71)
$$\begin{aligned} \frac{{\partial V_{2} }}{{\partial t_{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right.} \right. \\ & \quad \left. {\left. { + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right) + \delta \left( {1 - t_{2} } \right)Y_{2} P_{2}^{ - \mu } } \right], \hfill \\ \end{aligned}$$
(72)
$$\begin{aligned} \frac{{\partial V_{3} }}{{\partial t_{3} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } } \right.} \right. \\ & \quad \left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } + \delta \left( {1 - t_{3} } \right)Y_{3} P_{3}^{ - \mu } } \right]. \hfill \\ \end{aligned}$$
(73)

Letting (71)–(73) be zero yields the first-order condition for this problem:

$$\left( {1 + \delta } \right)t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{1} P_{1}^{ - \mu } ,$$
(74)
$$rt_{1} Y_{1} P_{1}^{ - \mu } + \left( {1 + \delta } \right)t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{2} P_{2}^{ - \mu } ,$$
(75)
$$r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + \left( {1 + \delta } \right)t_{3} Y_{3} P_{3}^{ - \mu } = \delta Y_{3} P_{3}^{ - \mu } .$$
(76)

Solving (74)–(76) yields the Nash tax rate for each region in (49)–(51). Note that the second-order condition is satisfied as follows:

$$\begin{aligned} \frac{{\partial^{2} V_{1} }}{{\partial t_{1}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{1} P_{1}^{ - \mu } \left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - \left( {1 + \delta } \right)t_{1} Y_{1} P_{1}^{ - \mu } - rt_{2} Y_{2} P_{2}^{ - \mu } - r^{2} t_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{1} P_{1}^{ - \mu } } \right] + \left( {t_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{1} P_{1}^{ - \mu } } \right]} \right\} < 0, \hfill \\ \end{aligned}$$
(77)

after substituting (74) into it

$$\begin{aligned} \frac{{\partial^{2} V_{2} }}{{\partial t_{2}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{2} P_{2}^{ - \mu } \left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - rt_{1} Y_{1} P_{1}^{ - \mu } - \left( {1 + \delta } \right)t_{2} Y_{2} P_{2}^{ - \mu } - rt_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{2} P_{2}^{ - \mu } } \right] + \left( {rt_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{2} P_{2}^{ - \mu } } \right]} \right\} < 0, \hfill \\ \end{aligned}$$
(78)

after substituting (75) into it.

$$\begin{aligned} \frac{{\partial^{2} V_{3} }}{{\partial t_{3}^{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left\{ { - \left( {1 - \delta } \right)Y_{3} P_{3}^{ - \mu } \left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 2} } \right. \\ & \quad \cdot \left[ { - r^{2} t_{1} Y_{1} P_{1}^{ - \mu } - rt_{2} Y_{2} P_{2}^{ - \mu } - \left( {1 + \delta } \right)t_{3} Y_{3} P_{3}^{ - \mu } + \delta Y_{3} P_{3}^{ - \mu } } \right] + \left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } } \right. \\ & \quad \left. {\left. { + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta - 1} \left[ { - \left( {1 + \delta } \right)Y_{3} P_{3}^{ - \mu } } \right]} \right\} < 0. \hfill \\ \end{aligned}$$
(79)

after substituting (76) into it.

Appendix C

Scenario I

The indirect utility of each region is as follows:

$$V_{1} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {1 - t_{1} } \right)\left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(80)
$$V_{2} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {1 - t_{1} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(81)
$$V_{3} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {1 - t_{1} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } .$$
(82)

To simply the calculation for analytical solution, \(\delta = 1\) is use for the following analysis. To maximize the sum of the indirect utility of each region, \(V = V_{1} + V_{2} + V_{3}\), is to differentiate V with respect to \(t_{1}\), \(t_{2}\), and \(t_{3}\)

$$\begin{aligned} \frac{\partial V}{{\partial t_{1} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( { - 2t_{1} Y_{1} P_{1}^{ - \mu } - 2rt_{2} Y_{2} P_{2}^{ - \mu } - 2rt_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \right), \\ \end{aligned}$$
(83)
$$\begin{aligned} \frac{\partial V}{{\partial t_{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( { - 2rt_{1} Y_{1} P_{1}^{ - \mu } - 2t_{2} Y_{2} P_{2}^{ - \mu } - 2rt_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \right), \\ \end{aligned}$$
(84)
$$\begin{aligned} \frac{\partial V}{{\partial t_{3} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( { - 2rt_{1} Y_{1} P_{1}^{ - \mu } - 2rt_{2} Y_{2} P_{2}^{ - \mu } - 2t_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + rY_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } \right). \\ \end{aligned}$$
(85)

Letting (83)–(85) be zero yields the first-order condition for this problem:

$$2t_{1} Y_{1} P_{1}^{ - \mu } + 2rt_{2} Y_{2} P_{2}^{ - \mu } + 2rt_{3} Y_{3} P_{3}^{ - \mu } = Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } ,$$
(86)
$$2rt_{1} Y_{1} P_{1}^{ - \mu } + 2t_{2} Y_{2} P_{2}^{ - \mu } + 2rt_{3} Y_{3} P_{3}^{ - \mu } = rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } ,$$
(87)
$$2rt_{1} Y_{1} P_{1}^{ - \mu } + 2rt_{2} Y_{2} P_{2}^{ - \mu } + 2t_{3} Y_{3} P_{3}^{ - \mu } = rY_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } .$$
(88)

Solving (86)–(88) yields the optimal tax rate:

$$t_{i}^{*} = \frac{{\left| {D_{i} } \right|}}{\left| D \right|},\quad i = 1,2,3,$$
(89)

where

$$\left| D \right| = 8Y_{1} P_{1}^{ - \mu } Y_{2} P_{2}^{ - \mu } Y_{3} P_{3}^{ - \mu } \left| {\begin{array}{*{20}c} 1 & r & r \\ r & 1 & r \\ r & r & 1 \\ \end{array} } \right|,$$
(90)
$$\left| {D_{1} } \right| = \left| {\begin{array}{*{20}c} {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2Y_{2} P_{2}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {rY_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {2Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|,$$
(91)
$$\left| {D_{2} } \right| = \left| {\begin{array}{*{20}c} {2Y_{1} P_{1}^{ - \mu } } & {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } & {2Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|,$$
(92)
$$\left| {D_{3} } \right| = \left| {\begin{array}{*{20}c} {2Y_{1} P_{1}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {2Y_{2} P_{2}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|.$$
(93)

Calculating for (89) yields the optimal tax rate of each region being 0.5. The second-order condition is satisfied for the maximum of V as follows:

$$\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1}^{2} P_{1}^{ - 2\mu } ,$$
(94)
$$\frac{{\partial^{2} V}}{{\partial t_{2}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2}^{2} P_{2}^{ - 2\mu } ,$$
(95)
$$\frac{{\partial^{2} V}}{{\partial t_{3}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3}^{2} P_{3}^{ - 2\mu } ,$$
(96)
$$\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }} = \frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r Y_{1} P_{1}^{ - \mu } Y_{2} P_{2}^{ - \mu } ,$$
(97)
$$\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{3} }} = \frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{1} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r Y_{1} P_{1}^{ - \mu } Y_{3} P_{3}^{ - \mu } ,$$
(98)
$$\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{3} }} = \frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r Y_{2} P_{2}^{ - \mu } Y_{3} P_{3}^{ - \mu } .$$
(99)
$$\left| B \right| = \left| {\begin{array}{*{20}l} {\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{3} }}} \hfill \\ {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{2}^{2} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{3} }}} \hfill \\ {\frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{1} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{2} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{3}^{2} }}} \hfill \\ \end{array} } \right|,$$
(100)
$$\left| {B_{1} } \right| = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1}^{2} P_{1}^{ - 2\mu } < 0,$$
(101)
$$\left| {B_{2} } \right| = \left| {\begin{array}{*{20}l} {\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }}} \hfill & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }}} \hfill \\ {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }}} \hfill & { - \frac{{\partial^{2} V}}{{\partial t_{2}^{2} }}} \hfill \\ \end{array} } \right| = 4\mu^{2\mu } \left( {1 - \mu } \right)^{{2\left( {1 - \mu } \right)}} Y_{1}^{2} P_{1}^{ - 2\mu } Y_{2}^{2} P_{2}^{ - 2\mu } \left( {1 - r^{2} } \right) > 0,$$
(102)
$$\left| {B_{3} } \right| = \left| B \right| = 8\mu^{3\mu } \left( {1 - \mu } \right)^{{3\left( {1 - \mu } \right)}} Y_{1}^{2} P_{1}^{ - 2\mu } Y_{2}^{2} P_{2}^{ - 2\mu } Y_{3}^{2} P_{3}^{ - 2\mu } \left( { - 1 + 3r^{2} - 2r^{3} } \right) < 0.$$
(103)

Scenario II


The indirect utility of each region is as follows:

$$V_{1} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( {1 - t_{1} } \right)\left( {t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(104)
$$V_{2} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( {1 - t_{1} } \right)\left( {rt_{1} Y_{1} P_{1}^{ - \mu } + t_{2} Y_{2} P_{2}^{ - \mu } + rt_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } ,$$
(105)
$$V_{3} = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( {1 - t_{1} } \right)\left( {r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + rt_{2} Y_{2} P_{2}^{ - \mu } + t_{3} Y_{3} P_{3}^{ - \mu } } \right)^{\delta } .$$
(106)

To simply the calculation for analytical solution, \(\delta = 1\) is use for the following analysis. To maximize the sum of the indirect utility of each region, \(V = V_{1} + V_{2} + V_{3}\), is to differentiate V with respect to \(t_{1}\), \(t_{2}\), and \(t_{3}\)

$$\begin{aligned} \frac{\partial V}{{\partial t_{1} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1} P_{1}^{ - \mu } \left( { - 2t_{1} Y_{1} P_{1}^{ - \mu } - 2rt_{2} Y_{2} P_{2}^{ - \mu } - 2r^{2} t_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + r^{2} Y_{3} P_{3}^{ - \mu } } \right), \\ \end{aligned}$$
(107)
$$\begin{aligned} \frac{\partial V}{{\partial t_{2} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2} P_{2}^{ - \mu } \left( { - 2rt_{1} Y_{1} P_{1}^{ - \mu } - 2t_{2} Y_{2} P_{2}^{ - \mu } - 2rt_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \right), \hfill \\ \end{aligned}$$
(108)
$$\begin{aligned} \frac{\partial V}{{\partial t_{3} }} & = \mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3} P_{3}^{ - \mu } \left( { - 2r^{2} t_{1} Y_{1} P_{1}^{ - \mu } - 2rt_{2} Y_{2} P_{2}^{ - \mu } - 2t_{3} Y_{3} P_{3}^{ - \mu } } \right. \\ & \quad \left. { + r^{2} Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } \right). \hfill \\ \end{aligned}$$
(109)

Letting (107)–(109) be zero yields the first-order condition for this problem:

$$2t_{1} Y_{1} P_{1}^{ - \mu } + 2rt_{2} Y_{2} P_{2}^{ - \mu } + 2r^{2} t_{3} Y_{3} P_{3}^{ - \mu } = Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + r^{2} Y_{3} P_{3}^{ - \mu } ,$$
(110)
$$2rt_{1} Y_{1} P_{1}^{ - \mu } + 2t_{2} Y_{2} P_{2}^{ - \mu } + 2rt_{3} Y_{3} P_{3}^{ - \mu } = rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } ,$$
(111)
$$2r^{2} t_{1} Y_{1} P_{1}^{ - \mu } + 2rt_{2} Y_{2} P_{2}^{ - \mu } + 2t_{3} Y_{3} P_{3}^{ - \mu } = r^{2} Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } .$$
(112)

Solving (110)–(112) yields the optimal tax rate:

$$t_{i}^{*} = \frac{{\left| {E_{i} } \right|}}{\left| E \right|},\quad i = 1,2,3.$$
(113)

where

$$\left| E \right| = 8Y_{1} P_{1}^{ - \mu } Y_{2} P_{2}^{ - \mu } Y_{3} P_{3}^{ - \mu } \left| {\begin{array}{*{20}c} 1 & r & {r^{2} } \\ r & 1 & r \\ {r^{2} } & r & 1 \\ \end{array} } \right|,$$
(114)
$$\left| {E_{1} } \right| = \left| {\begin{array}{*{20}c} {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + r^{2} Y_{3} P_{3}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {2r^{2} Y_{3} P_{3}^{ - \mu } } \\ {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2Y_{2} P_{2}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {r^{2} Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {2Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|,$$
(115)
$$\left| {E_{2} } \right| = \left| {\begin{array}{*{20}c} {2Y_{1} P_{1}^{ - \mu } } & {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + r^{2} Y_{3} P_{3}^{ - \mu } } & {2r^{2} Y_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } & {2rY_{3} P_{3}^{ - \mu } } \\ {2r^{2} Y_{1} P_{1}^{ - \mu } } & {r^{2} Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } & {2Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|,$$
(116)
$$\left| {E_{3} } \right| = \left| {\begin{array}{*{20}c} {2Y_{1} P_{1}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + r^{2} Y_{3} P_{3}^{ - \mu } } \\ {2rY_{1} P_{1}^{ - \mu } } & {2Y_{2} P_{2}^{ - \mu } } & {rY_{1} P_{1}^{ - \mu } + Y_{2} P_{2}^{ - \mu } + rY_{3} P_{3}^{ - \mu } } \\ {2r^{2} Y_{1} P_{1}^{ - \mu } } & {2rY_{2} P_{2}^{ - \mu } } & {r^{2} Y_{1} P_{1}^{ - \mu } + rY_{2} P_{2}^{ - \mu } + Y_{3} P_{3}^{ - \mu } } \\ \end{array} } \right|.$$
(117)

Calculating for (113) yields the optimal tax rate of each region being 0.5. The second-order condition is satisfied for the maximum of V as follows:

$$\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1}^{2} P_{1}^{ - 2\mu } ,$$
(118)
$$\frac{{\partial^{2} V}}{{\partial t_{2}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{2}^{2} P_{2}^{ - 2\mu } ,$$
(119)
$$\frac{{\partial^{2} V}}{{\partial t_{3}^{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{3}^{2} P_{3}^{ - 2\mu } ,$$
(120)
$$\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }} = \frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r Y_{1} P_{1}^{ - \mu } Y_{2} P_{2}^{ - \mu } ,$$
(121)
$$\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{3} }} = \frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{1} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r^{2} Y_{1} P_{1}^{ - \mu } Y_{3} P_{3}^{ - \mu } ,$$
(122)
$$\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{3} }} = \frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{2} }} = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } r Y_{2} P_{2}^{ - \mu } Y_{3} P_{3}^{ - \mu } .$$
(123)
$$\left| F \right| = \left| {\begin{array}{*{20}c} {\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }}} & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }}} & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{3} }}} \\ {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }}} & {\frac{{\partial^{2} V}}{{\partial t_{2}^{2} }}} & {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{3} }}} \\ {\frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{1} }}} & {\frac{{\partial^{2} V}}{{\partial t_{3} \partial t_{2} }}} & {\frac{{\partial^{2} V}}{{\partial t_{3}^{2} }}} \\ \end{array} } \right|,$$
(124)
$$\left| {F_{1} } \right| = - 2\mu^{\mu } \left( {1 - \mu } \right)^{1 - \mu } Y_{1}^{2} P_{1}^{ - 2\mu } < 0,$$
(125)
$$\left| {F_{2} } \right| = \left| {\begin{array}{*{20}c} {\frac{{\partial^{2} V}}{{\partial t_{1}^{2} }}} & {\frac{{\partial^{2} V}}{{\partial t_{1} \partial t_{2} }}} \\ {\frac{{\partial^{2} V}}{{\partial t_{2} \partial t_{1} }}} & { - \frac{{\partial^{2} V}}{{\partial t_{2}^{2} }}} \\ \end{array} } \right| = 4\mu^{2\mu } \left( {1 - \mu } \right)^{{2\left( {1 - \mu } \right)}} Y_{1}^{2} P_{1}^{ - 2\mu } Y_{2}^{2} P_{2}^{ - 2\mu } \left( {1 - r^{2} } \right) > 0,$$
(126)
$$\left| {F_{3} } \right| = \left| F \right| = 8\mu^{3\mu } \left( {1 - \mu } \right)^{{3\left( {1 - \mu } \right)}} Y_{1}^{2} P_{1}^{ - 2\mu } Y_{2}^{2} P_{2}^{ - 2\mu } Y_{3}^{2} P_{3}^{ - 2\mu } \left( { - 1 + 2r^{2} - r^{4} } \right) < 0.$$
(127)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, JF. Tax competition with spillover public goods in a median location model. Asia-Pac J Reg Sci 3, 831–862 (2019). https://doi.org/10.1007/s41685-019-00139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41685-019-00139-2

Keywords

Navigation