Skip to main content

Advertisement

Log in

Trends in Gunshot Residue Detection by Electrochemical Methods for Forensic Purpose

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Gunshot Residue (GSR) has been a subject of interest for the forensic fraternity. Numerous analytical contributions towards the GSR analysis have been reported. Sensitivity, portability, cost-effectiveness, speed, etc. are such factors of electrochemical methods that have attracted the researchers across the globe to test the applicability of these as a potential analytical tool for forensic evaluation of GSR. With the development of scientific technology, efforts have been made towards the hand-held device for the on-field analysis of GSR. Recently, chemometric treatment of data generated from the electrochemical analysis of GSR has offered more effective approach. It makes the analysis more conclusive and minimizes the chances of false-positive detection. It will be very fruitful to anticipate the analytical potential of electrochemical tools for GSR analysis. This article reviews the research progress towards the development of electrochemical sensor for GSR detection reported during 2013–2020 along with challenges and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Romolo FS, Margot P. Identification of gunshot residue: a critical review. Forensic Sci Int. 2001;119:195.

    Article  Google Scholar 

  2. Brozek-Moucha Z. Trends in analysis of gunshot residue for forensic purpose. Anal Bioanal Chem. 2017;409(25):5803.

    Article  CAS  Google Scholar 

  3. Brozek-Mucha Z. Distribution and properties of gunshot residue originating from a Luger 9 mm ammunition in the vicinity of the shooting gun. Forensic Sci Int. 2009;183:33.

    Article  CAS  PubMed  Google Scholar 

  4. Feeney W, Pyl CV, Bell S, Trejos T. Trends in composition, collection, persistence, and analysis of IGSR and OGSR: a review. Forensic Chem. 2020;19:100250.

    Article  CAS  Google Scholar 

  5. Wallace JS. Chemical analysis of firearms. Boca Raton, London, New York: Ammunition and Gunshot Residue. CRC Press; 2008.

    Google Scholar 

  6. Walker JT. Bullet holes and chemical residues in shooting cases bullet holes and chemical residues in shooting cases. J Criminal Law Criminol. 1941; 31(4).

  7. Harrison H, Gilroy R (1959) Firearm discharge residue. J Forensic Sci 184 (4).

  8. Brozek-Mucha Z. Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive x-ray spectrometry. Microsc Microanal. 2011;7:972.

    Article  CAS  Google Scholar 

  9. Chohra M, Beladel B, Ahmed BL, Mouzai M, Akretche D, Zeghdaoui A, Mansouri A, Benamar MEA. Study of gunshot residue by NAA and ESEM/EDX using several kinds of weapon and ammunition. J Radiation Res Appl Sci. 2015;8:404.

    Article  Google Scholar 

  10. Kazimirov VI, Zorin AD, Zanozina VF. Application of x-ray fluorescence analysis to investigation of the composition of gunshot residues. J Appl Spectrosc. 2006;73(3):359.

    Article  CAS  Google Scholar 

  11. Romolo FS, Christopher ME, Donghi M, Ripani L, Jeynes C, Webb RP, Ward NI, Krickby KJ, Bailey MJ. Integrated ion beam analysis (IBA) in Gunshot Residue (GSR) characterization. Forensic Sci Int. 2013;231(1–3):219.

    Article  CAS  PubMed  Google Scholar 

  12. Vanini G, Destefani CA, Merlo BB, Carneiro MTWD, Filgueiras PR, Poppi RJ, Romão W. Forensic ballistics by inductively coupled plasma-optical emission spectroscopy: Quantification of gunshot residues and prediction of the number of shots using different firearms. Microchem J. 2015;118:19.

    Article  CAS  Google Scholar 

  13. ASTM E1588-17. Standard Practice for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry. ASTM International, West Conshohocken, PA, 2017. DOI: https://doi.org/10.1520/E1588-17

  14. Leggett LS, Lott PF. Gunshot Residue analysis via organic stabilizers and nitrocellulose. Microchem J. 1989;39:76.

    Article  CAS  Google Scholar 

  15. Taudte RV, Roux C, Bishop D, Blanes L, Doble P, Beavis A. Development of a UHPLC method for the detection of organic gunshot residues using artificial neural networks. Anal Methods. 2015;7:747.

    Article  CAS  Google Scholar 

  16. Tarifa A, Almirall JR. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC–MS and LIBS. Sci Justice. 2015;55(3):168.

    Article  PubMed  Google Scholar 

  17. Taudte RV, Beavis A, Blanes L, Cole N, Doble P, Roux C. Detection of Gunshot residues using mass spectrometry. Bio Med Res Int. 2014; 965403.

  18. Williamson R, Gura S, Tarifa A, Almirall JR. The coupling of capillary microextraction of volatiles (CMV) dynamic air sampling device with DART-MS analysis for the detection of gunshot residues. Forensic Chem. 2018;8:49.

    Article  CAS  Google Scholar 

  19. Mou Y, Lakadwar J, Rabalais JW. Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR. J Forensic Sci. 2008;53(6):1381.

    CAS  PubMed  Google Scholar 

  20. Goudsmits E, Sharples GP, Birkett JW. Recent trends in organic gunshot residue analysis. TrAC. 2015;74:46.

    CAS  Google Scholar 

  21. Doty KC, Lednev IK. Raman spectroscopy for forensic purposes: recent applications for serology and gunshot residue analysis. TrAC. 2018;103:215.

    CAS  Google Scholar 

  22. Morales EB, V´azquez ALR. Simultaneous determination of inorganic and organic gunshot residues by capillary electrophoresis. Journal of Chromatography A. 2004; 1061: 225.

  23. Gandy L, Najjar K, Terry M, Bridge C. A novel protocol for the combined detection of organic, inorganic gunshot residue. Forensic Chem. 2018;8:1.

    Article  CAS  Google Scholar 

  24. Goudsmits E, Blakey LS, Chana K, Sharples GP, Birkett JW. The analysis of organic and inorganic gunshot residue from a single sample. Forensic Sci Int. 2019;299:168.

    Article  CAS  PubMed  Google Scholar 

  25. Trejos T, Pyl CV, Menking-Hoggatt K, Alvarado AL, Arroyo LE. Fast identification of inorganic and organic gunshot residues by LIBS and electrochemical methods. Forensic Chem. 2018;8:146.

    Article  CAS  Google Scholar 

  26. Tsiatis N. A twenty-year review of firearms calibers used in offences against human life in Greece. AFTE J. 2016;48(2):92.

    Google Scholar 

  27. Khoshnood A. The increase of firearm-related violence in Sweden. Forensic Sci Res. 2017;2(3):158.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khoshnood A. Firearm-related violence in Sweden: a systematic review. Aggress Violent Beh. 2018;42:43.

    Article  Google Scholar 

  29. Morgan A, Aqil NA, AlOkeil NA, Ghaleb SA, Otaibi AF, Alashqar HM, Ghuwainem SOA, Qahtani MAM. Firearm injuries in rural Saudi Arabia: incidence, patterns, management, and cost. Egypt J Forensic Sci. 2019;9:1.

    Article  Google Scholar 

  30. Mattijssen EJAT. Interpol review of forensic firearm examination 2016–2019. Forensic Sci Int. 2020. https://doi.org/10.1016/j.fsisyn.2020.01.008.

    Article  PubMed  Google Scholar 

  31. National Crime Record Bureau (NCRB), Ministry of home Affairs, Govt. of India, Crime in India 2018 (2019). http://ncrb.gov.in/sites/default/files/Crime%20in%20India%202018%20-%20Volume%201.pdf

  32. National Crime Record Bureau (NCRB), Ministry of home Affairs, Govt. of India, Crime in India 2017 (2019). http://ncrb.gov.in/sites/default/files/Crime%20in%20India%202017%20-%20Volume%201_0.pdf.

  33. National Crime Record Bureau (NCRB), Ministry of home Affairs, Govt. of India, Crime in India 2016, (2017).

  34. National Crime Record Bureau (NCRB), Ministry of home Affairs, Govt. of India, Crime in India 2015, (2016).

  35. de Oliveira LP, Rocha DP, de Araujo WR, Munoz RAA, Paixão TRLC, Salles MO. Forensics in hand: new trends in forensic devices (2013–2017). Anal Methods. 2018;10:5135.

    Article  Google Scholar 

  36. Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What electrochemical biosensors can do for forensic science? Unique Features Appl Biosens. 2019;9:127.

    Google Scholar 

  37. Shaw L, Dennany L. Applications of electrochemical sensors: forensic drug analysis. Curr Opin Electrochem. 2017;3:23.

    Article  CAS  Google Scholar 

  38. Florea A, de Jong M, De Wael K. Review article electrochemical strategies for the detection of forensic drugs. Curr Opin Electrochem. 2018;11:34.

    Article  CAS  Google Scholar 

  39. Barfidokh A, Mishra RK, Seenivasan R, Liua S, Hubble LJ, Wang J, Hall DA. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens Actuat. 2019;296:126422.

    Article  CAS  Google Scholar 

  40. Mishra RK, Sempionatto JR, Li Z, Brown C, Galdino NM, Shah R, Liu S, Hubble LJ, Bagot K, Tapert S, Wang J. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta. 2020;211:120757.

    Article  CAS  PubMed  Google Scholar 

  41. Mendes LF, Rodrigues Â, Silva SE, Bacil RP, Serrano SHP, Angnes L, Paixão TRLC, de Araujo WR. Forensic electrochemistry: electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochim Acta. 2018;295:726.

    Article  CAS  Google Scholar 

  42. Sempionatto JR, Mishra RK, Martín A, Tang G, Nakagawa T, Lu X, Campbell AS, Lyu KM, Wang J. Wearable ring-based sensing platform for detecting chemical threats. ACS Sens. 2017;10(2):1531.

    Article  CAS  Google Scholar 

  43. Gooch J, Daniel B, Parkin M, Frascione N. Developing aptasensors for forensic analysis. Trends Anal Chem. 2017;94:150.

    Article  CAS  Google Scholar 

  44. Yu HA, DeTata DA, Lewis SW, Silvester DS. Recent developments in the electrochemical detection of explosives: towards field-deployable devices for forensic science. Trends Anal Chem. 2017;97:374.

    Article  CAS  Google Scholar 

  45. de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Muñoz RAA, Richter EM, Paixão TRLC, Coltro WKT. Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta. 2018;1034:1.

    Article  PubMed  CAS  Google Scholar 

  46. O’Mahony AM, Wang J. Electrochemical detection of gunshot residue for forensic analysis: a review. Electroanalysis. 2013;25(6):1341.

    Article  CAS  Google Scholar 

  47. Smith JP, Randviir EP, Banks CE (eds). An introduction to forensic electrochemistry (2016). In: E. Katz, J. Halamek, Forensic Science: A Multidisciplinary Approach, (2016) Wiley-VCH Verlag GmbH& co. KGaA. DOI: https://doi.org/10.1002/9783527693535.ch5

  48. Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. USA: Cengage Learning; 2006.

    Google Scholar 

  49. Janata J. Principle of Chemical Sensors, 2nd ed. Springer Boston, MA, 2009. DOI: https://doi.org/10.1007/b136378

  50. Wen W. Introductory chapter: What is chemical sensor? INTECH. 2016. https://doi.org/10.5772/64626.

    Article  Google Scholar 

  51. Power AC, Morrin A. Electroanalytical sensor techonology. INTECH. 2013. https://doi.org/10.5772/51480.

    Article  Google Scholar 

  52. Lubert KH, Kalcher K. History of electroanalytical methods. Electroanalysis. 2010;22:1937–46. https://doi.org/10.1002/elan.201000087.

    Article  CAS  Google Scholar 

  53. Stradiotto NR, Yamanaka H, Zanoni MVB. Electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc. 2003;14(2):159.

    Article  CAS  Google Scholar 

  54. Scozzari A (2008) Electrochemical sensing methods a brief review. In: Evangelista V, Barsanti L, Frassanito AM (eds) Algal toxins: nature, occurrence, effect and detection (NATO science for peace and security series A: chemistry and biology). Milan: Springer, (2008). Doi: https://doi.org/10.1007/978-1-4020-8480-5_16.

  55. Konanur NK, Van Loon GW. Determination of lead and antimony in firearms discharge residues on hands by anodic stripping voltammetry. Talanta. 1977;24:184.

    Article  CAS  PubMed  Google Scholar 

  56. Liu JH, Lin W. The application of anodic stripping voltammetry to Forensic science. I. The construction of a low-cost polarograph. Forensic Sci Int. 1980;16:43.

    Article  CAS  Google Scholar 

  57. Liu JH, Lin W, Nicol JD. The application of anodic stripping voltammetry to Forensic science. II. Anodic stripping voltammetric analysis of Gunshot Residues. Forensic Sci Int. 1980;16:53.

    Article  CAS  Google Scholar 

  58. Brihaye C, Machiroux R, Gillian G. Gunpowder residues detection by anodic stripping voltammetry. Forensic Sci Int. 1982;20:269.

    Article  CAS  Google Scholar 

  59. Jauhari M, Rao MS, Chattopadhyay N, Chatterjee SM, Sen A. Shooter identification: elemental analysis of swabbing materials by neutron activation analysis (NAA) and anodic stripping voltammetry (ASV). Forensic Sci Int. 1985;28:175.

    Article  CAS  Google Scholar 

  60. Briner RC, Chouchoiy S, Webster RW, Popham RE. Anodic stripping voltammetric determination of antimony in gunshot residue. Anal Chim Acta. 1985;172:31.

    Article  CAS  Google Scholar 

  61. Woolever CA, Starkey DE, Dewald HD. Differential pulse anodic stripping voltammetry of lead and antimony in gunshot residues. Forensic Sci Int. 1999;102:45.

    Article  CAS  Google Scholar 

  62. Bohannan E, Van Galen D. A sensitive electrochemical method for the analysis of nitrite ion and metals in Gunshot Residue. J Forensic Sci. 1991;36(3):886.

    Article  CAS  Google Scholar 

  63. Woolever CA, Dewald HD. Differential pulse anodic stripping voltammetry of barium and lead in gunshot residues. Forensic Sci Int. 2001;117:185.

    Article  CAS  PubMed  Google Scholar 

  64. Bratin K, Kissinger PT. Determination of nitro aromatic, nitramine, and Nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid chromatography and reductive electrochemical detection. Anal Chim Acta. 1981;130:295.

    Article  CAS  Google Scholar 

  65. Dahl DB, Lott PF. Gunshot residue determination by means of gunpowder stabilizers using high-performance liquid chromatography with electrochemical detection and analysis of metallic residues by graphite furnace atomic absorption spectrophotometry. Microchem J. 1987;35:347.

  66. Wang J, Lu F, MacDonald D, Lu J, Ozsoz MES, Rogers KR. Screen-printed voltammetric sensor for TNT. Talanta. 1998;46:1405.

    Article  CAS  PubMed  Google Scholar 

  67. Vuki M, Shiu K, Galik M, O’Mahony AM, Wang J. Simultaneous electrochemical measurement of metal and organic propellant constituents of gunshot residues. Analyst. 2012;137:3265.

    Article  CAS  PubMed  Google Scholar 

  68. De DA, Gutz IGR. Fast mapping of gunshot residues by batch injection analysis with anodic stripping voltammetry of lead at the hanging mercury drop electrode. Electroanalysis. 2005;17(2):105.

    Article  CAS  Google Scholar 

  69. Rodriguez JA, Ibarra IS, Galan-Vidal CA, Vega M, Barrado E. Multicommutated anodic stripping voltammetry at tubular bismuth film electrode for lead determination in Gunshot Residues. Electroanalysis. 2009;21:452.

    Article  CAS  Google Scholar 

  70. Erden S, Durmus Z, Kilic E. Simultaneous determination of antimony and lead in gunshot residue by cathodic adsorptive stripping voltammetric methods. Electroanalysis. 1967;2011:23.

    Google Scholar 

  71. Galik M, O’ Mahony AM, Wang J. Cyclic and square-wave voltammetric signatures of nitro- containing explosives. Electroanalysis. 2011;23(5):1193.

    Article  CAS  Google Scholar 

  72. Salles MO, Bertotti M, Paixão TRLC. Use of a gold microelectrode for discrimination of gunshot residues. Sensors and Actuators B. 2012; 166.

  73. Salles MO, Naozuka J, Bertotti M. A forensic study: lead determination in gunshot residues. Microchem J. 2012;101:49.

    Article  CAS  Google Scholar 

  74. Cetó X, O_Mahony AM, Samek IA, Windmiller JR, Wang J (2012) Rapid field identification of subjects involved in firearm-related crimes based on electroanalysis coupled with advanced chemometric data treatment. Anal Chem. 84: 10306.

  75. O’Mahony AM, Windmiller JR, Samek IA, Bandodkar AJ, Wang J. “Swipe and Scan”: Integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochem Commun. 2012;23:52.

    Article  CAS  Google Scholar 

  76. Bandodkar AJ, O’Mahony AM, Ramírez J, Samek IA, Anderson SM, Windmiller JR, Wang J. Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: towards ‘Lab-on-a-finger.’ Analyst. 2013;138:5288.

    Article  CAS  PubMed  Google Scholar 

  77. O’Mahony AM, Samek IA, Sattayasamitsathit S, Wang J. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive x-ray spectroscopy: sample, screen, and confirm. Anal Chem. 2014;86:8031.

    Article  PubMed  CAS  Google Scholar 

  78. Cardoso RM, Castro SVF, Silvaa MNT, Lima AP, Santana MHP, Nossol E, Silva RAB, Richter EM, Paixao TRLC, Munoz RAA. 3D-printed flexible device combining sampling and detection of explosives. Sens And Actuat B. 2019;292:308.

    Article  CAS  Google Scholar 

  79. Castro SVF, Lima AP, G. Rocha RG, Cardoso RM, Montes RHO, Santana MHP, Richter EM, Munoz RAA (2020) Simultaneous determination of lead and antimony in gunshot residue using a 3 Dprinted platform working as sampler and sensor. Analytica Chemical Acta 1130: 126

  80. Hashim NAHM, Zain ZM, Zafar MZ. Copper determination in gunshot residue by cyclic voltammetric and inductive coupled plasma-optical emission spectroscopy. MATEC Web Conf ICFST. 2016;59:04005.

    Article  CAS  Google Scholar 

  81. Yan MAO, Yu BAO, Dong-Xue HAN, Bing ZHAO. Research progress on nitrite electrochemical sensor. Chin J Anal Chem. 2018;46(2):147.

    Article  Google Scholar 

  82. Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Nitrite amperometric sensor for gunshot residue screening. Electro Chemica Acta. 2020;331:135309.

    Article  CAS  Google Scholar 

  83. Koons RD. Analysis of gunshot primer residue collection swabs by inductively coupled plasma-mass spectrometry. J Forensic Sci. 1998;43(4):748–54.

    Article  CAS  Google Scholar 

  84. Harshey A, Das T, Srivastava A. Analytical contributions of lanthanide based metal-organic frame works as luminescent markers: recent trends in gunshot residue analysis. Microchem J. 2020;154:104597.

    Article  CAS  Google Scholar 

  85. Harshey A, Srivastava A, Yadav VK, Nigam K, Kumar A, Das T (2017) Analysis of glass fracture pattern made by .177″ (4.5 mm) caliber air rifle. Egypt J. Forensic Sci 7(20): 1.

  86. Abhyankar S, Srivastava A, Yadav V, Nigam K, Harshey A. Glass fractures made from different pellet shapes- a preliminary study. J Forensic Sci Criminal Investig. 2018;8:1.

    Google Scholar 

  87. Tiwari N, Harshey A, Das T, Abhyankar S, Yadav VK, Nigam K, Anand VR, Srivastava A (2019) Evidential significance of multiple fracture patterns on the glass in forensic ballistics. Egypt J Forensic Sci. 9 (22).

  88. Alim M, Negi KS, Abhyankar S, Tiwari N, Harshey A, Srivastava A. Towards the investigation of shooting incidents: evaluation of fracture pattern on polymethylmethacrylate sheet made by .22 and .177caliber air rifle. Heliyon 2020; 6(5): e04088

  89. Wightman G, Wark K, Thmson J. The interaction between clothing and air weapon pellets. Forensic Sci Int. 2015;246:6.

    Article  CAS  PubMed  Google Scholar 

  90. Nery EW, Kubota LT. Sensing approaches on paper-based devices: a review. Anal Bioanal Chem. 2013;405:7573.

    Article  CAS  PubMed  Google Scholar 

  91. Bhattacharya S, Kumar S, Agarwal AK (eds). Paper Microfluidics, Springer. 2019. https://doi.org/10.1007/978-981-15-0489-1

  92. Buking S, Saetear P, Tiyapongpattana W, Uraisin K, Wilairat P, Nacapricha D, Ratanawimarnwong N. Microfluidic paper-based analytical device for quantification of lead using reaction band-length for identification of bullet hole and its potential for estimating firing distance. Anal Sci. 2018;34:83.

    Article  CAS  PubMed  Google Scholar 

  93. Alsaeed B, Mansour FR. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem J. 2020;155:104664.

    Article  CAS  Google Scholar 

  94. Yañez J, Farías MP, Zúñiga V, Soto C, Contreras D, Pereira E, Mansilla HD, Saavedra R, Castillo R, Sáez P. Differentiation of two main ammunition brands in Chile by regularized discriminant analysis (RDA) of metals in gunshot residues. Microchem J. 2012;101:43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors are sincerely thankful to the University Grants Commission (UGC), Ministry of Education, Government of India, for providing financial assistance (UGC-JRF vide Letter No. 190521040928) to the first author (AH).

Author information

Authors and Affiliations

Authors

Contributions

AH, AS and TD have equally contributed to all aspects of this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ankit Srivastava.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshey, A., Srivastava, A., Das, T. et al. Trends in Gunshot Residue Detection by Electrochemical Methods for Forensic Purpose. J. Anal. Test. 5, 258–269 (2021). https://doi.org/10.1007/s41664-020-00152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00152-x

Keywords

Navigation