The Analysis of Zirconium (IV) Oxide (ZrO2) Nanoparticles for Peroxidase Activity

Abstract

In this study, the peroxidase-like activity of zirconium (IV) oxide nanoparticles (nZr) is reported. Peroxidases catalyze the oxidation of their substrate in the presence of peroxide species. 3,3′,5,5′-tetramethylbenzidine (TMB) is a peroxidase substrate, and we have demonstrated that nZr oxidizes the TMB in the presence of hydrogen peroxide resulting in a colored (TMBox) product. The reaction was tested in various buffers, and sodium acetate with pH 4 was observed to be an ideal buffer for the enzymatic reaction and the dispersity of the nZr in the solution. The nanozyme behavior was studied systematically at three different temperatures (25, 35 and 45 °C) and a wide range of H2O2 concentrations. The dependence of the enzymatic reaction on temperature, nZr content and H2O2 concentration was observed. The enzymatic reaction was tested in different protein solutions and no noticeable interference was observed with these proteins. Overall, we demonstrate that nZr, which is often used for industrial applications, mimics peroxidase enzyme and catalyzes oxidation of its substrate in the presence of peroxide species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S. Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros Sci. 2011;53:89–98.

    CAS  Article  Google Scholar 

  2. 2.

    Keiteb AS, Saion E, Zakaria A, Soltani N. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J. Nanomater. 2016. https://doi.org/10.1155/2016/1913609.

    Article  Google Scholar 

  3. 3.

    Lopez de Armentia S, Pantoja M, Abenojar J, Martinez MA. Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties. Coatings. 2018. https://doi.org/10.3390/coatings8100368.

    Article  Google Scholar 

  4. 4.

    Chen YW, Moussi J, Drury JL, Wataha JC. Zirconia in biomedical applications. Expert Rev Med Devices. 2016;13:945–63.

    CAS  Article  Google Scholar 

  5. 5.

    Turon-Vinas M, Anglada M. Strength and fracture toughness of zirconia dental ceramics. Dent Mater. 2018;34:365–75.

    CAS  Article  Google Scholar 

  6. 6.

    Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res. 2018;8:58–67.

    Article  Google Scholar 

  7. 7.

    Dhanasekaran P, Williams SR, Kalpana D, Bhat SD. Boosting efficiency and stability using zirconia nanosphere-held carbon for proton exchange membrane fuel cells. RSC Adv. 2018;8:472–80.

    CAS  Article  Google Scholar 

  8. 8.

    Wattanapaphawong P, Reubroycharoen P, Yamaguchi A. Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Adv. 2017;7:18561–8.

    CAS  Article  Google Scholar 

  9. 9.

    Meghshyam KP, Avvari NP, Benjaram MR. Zirconia-based solid acids: green and heterogeneous catalysts for organic synthesis. Curr Org Chem. 2011;15:3961–85.

    Article  Google Scholar 

  10. 10.

    Liu H, Cheung P, Iglesia E. Zirconia-supported MoOx catalysts for the selective oxidation of dimethyl ether to formaldehyde: structure, redox properties, and reaction pathways. J Phys Chem B. 2003;107:4118–27.

    CAS  Article  Google Scholar 

  11. 11.

    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    CAS  Article  Google Scholar 

  12. 12.

    Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    CAS  Article  Google Scholar 

  13. 13.

    Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, Sheng J, Yigit MV. Multiplexed Activity of perAuxidase: DNA-Capped AuNPs act as adjustable peroxidase. Anal Chem. 2016;88:600–5.

    CAS  Article  Google Scholar 

  14. 14.

    Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 2016;3:41–60.

    CAS  Article  Google Scholar 

  15. 15.

    Han L, Zhang H, Li F. Bioinspired Nanozymes with pH-Independent and Metal Ions-Controllable Activity: field-Programmable Logic Conversion of Sole Logic Gate System. Part Part Syst Charact. 2018. https://doi.org/10.1002/ppsc.201800207.

    Article  Google Scholar 

  16. 16.

    Han KN, Choi JS, Kwon J. Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-02948-x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Pautler R, Kelly EY, Huang PJ, Cao J, Liu B, Liu J. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces. 2013;5:6820–5.

    CAS  Article  Google Scholar 

  18. 18.

    Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26:4200–17.

    CAS  Article  Google Scholar 

  19. 19.

    Asati A, Kaittanis C, Santra S, Perez JM. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem. 2011;83:2547–53.

    CAS  Article  Google Scholar 

  20. 20.

    Lang NJ, Liu B, Liu J. Characterization of glucose oxidation by gold nanoparticles using nanoceria. J Colloid Interf Sci. 2014;428:78–83.

    CAS  Article  Google Scholar 

  21. 21.

    Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    CAS  Article  Google Scholar 

  22. 22.

    Li X, Wen F, Creran B, Jeong Y, Zhang X, Rotello VM. Colorimetric protein sensing using catalytically amplified sensor arrays. Small. 2012;8:3589–92.

    CAS  Article  Google Scholar 

  23. 23.

    Artiglia L, Agnoli S, Paganini MC, Cattelan M, Granozzi G. TiO2@CeOx core-shell nanoparticles as artificial enzymes with peroxidase-like activity. ACS Appl Mater Interf. 2014;6:20130–6.

    CAS  Article  Google Scholar 

  24. 24.

    Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun. 2014. https://doi.org/10.1038/ncomms6301.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Guo X, Wang Y, Wu F, Ni Y, Kokot SA. Colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst. 2015;140:1119–26.

    CAS  Article  Google Scholar 

  26. 26.

    Lin T, Zhong L, Guo L, Fu F, Chen G. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale. 2014;6:11856–62.

    CAS  Article  Google Scholar 

  27. 27.

    Chen Q, Chen J, Gao C, Zhang M, Chen J, Qiu H. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst. 2015;140:2857–63.

    CAS  Article  Google Scholar 

  28. 28.

    Zhao R, Zhao X, Gao X. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chemistry. 2015;21:960–4.

    CAS  Article  Google Scholar 

  29. 29.

    Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X. In situ synthesis of self-assembled three-dimensional graphene-magnetic palladium nanohybrids with dual-enzyme activity through one-pot strategy and its application in glucose probe. ACS Appl Mater Interf. 2015;7:3480–91.

    CAS  Article  Google Scholar 

  30. 30.

    Zhan L, Li CM, Wu WB, Huang CZ. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun. 2014;50:11526–8.

    CAS  Article  Google Scholar 

  31. 31.

    Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, Mao H, Wang K. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron. 2014;C65:39–46.

    Google Scholar 

  32. 32.

    Tao Y, Lin Y, Ren J, Qu X. Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials. 2013;34:4810–7.

    CAS  Article  Google Scholar 

  33. 33.

    Wang Z, Yang X, Yang J, Jiang Y, He N. Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal Chim Acta. 2015;862:53–63.

    CAS  Article  Google Scholar 

  34. 34.

    Nandu N, Salih HM, Roberston NM, Ozturk B, Yigit MV. Masking the peroxidase-like activity of the molybdenum disulfide nanozyme enables label-free lipase detection. ChemBioChem. 2018;19:1–8.

    Article  Google Scholar 

  35. 35.

    Liu B, Liu J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale. 2015;7:13831–5.

    CAS  Article  Google Scholar 

  36. 36.

    Navío JA, Hidalgo MC, Colón G, Botta SG, Litter MI. Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 prepared by a sol − gel technique. Langmuir. 2001;17:202–10.

    Article  Google Scholar 

  37. 37.

    El Haskouri J, Cabrera S, Guillem C, Latorre J, Beltrán A, Beltrán D, Marcos MD, Amorós P. Atrane precursors in the one-pot surfactant-assisted synthesis of high zirconium content porous silicas. Chem Mater. 2002;14:5015–22.

    Article  Google Scholar 

  38. 38.

    Hiroki A, Laverne JA. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J Phys Chem B. 2005;109:3364–70.

    CAS  Article  Google Scholar 

  39. 39.

    Sobańska K, Pietrzyk P, Sojka Z. Generation of reactive oxygen species via electroprotic interaction of H2O2 with ZrO2 gel :ionic sponge effect and pH-switchable Peroxidase- and catalase-like activity. ACS Catal. 2017;7:2935–47.

    Article  Google Scholar 

  40. 40.

    Josephy PD, Eling T, Mason RP. The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine: free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257:3669–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kumar V, Bano D, Singh DK, Mohan S, Singh VK, Hasan SH. Size-dependent synthesis of gold nanoparticles and their peroxidase-like activity for the colorimetric detection of glutathione from human blood serum. ACS Sustain Chem Eng. 2018;6:7662–75.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture (NIFA), AFRI project (2018-67021-27973, 2017-07822).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehmet V. Yigit.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, C.W., Chen, Y., Nandu, N. et al. The Analysis of Zirconium (IV) Oxide (ZrO2) Nanoparticles for Peroxidase Activity. J. Anal. Test. 3, 246–252 (2019). https://doi.org/10.1007/s41664-019-00101-3

Download citation

Keywords

  • Artificial enzyme
  • Nanozyme
  • Peroxidase
  • Sensor
  • Zirconium (IV) oxide (ZrO2)