Skip to main content

Advertisement

Log in

Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Neurotransmitters are important biological molecules related to several nervous system diseases (NSDs). Point-of-care testing (POCT) of neurotransmitters is of great importance in preclinical research and early diagnosis of NSDs. Among various POCT platforms, paper-based electrochemical biosensors have achieved great advances in detection of neurotransmitters, thus taking a significant role in POCT of neurotransmitters nowadays. This review gives an overview of the recent advances of paper-based electrochemical biosensors for POCT of neurotransmitters. We first introduce the types of neurotransmitters and biological sample sources mainly used for neurotransmitter detection. Second, we review the components and the traditional fabrication technologies for paper-based electrochemical POCT biosensors, and then the functional modification methods of biosensor surfaces and three-dimensional fabrication methods for further enhancement of their detection performance. Then, we list examples of paper-based electrochemical biosensors used for detecting different neurotransmitters in biological samples. Last, we give a conclusion and promising development direction of paper-based electrochemical biosensors for neurotransmitters detection. The purpose of this review is to introduce the paper-based electrochemical biosensors as an emerging technology for POCT of neurotransmitters, offering a reference for readers and researchers for early diagnosis of NSDs using POCT technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun Y, Yang T, Leak RK, Chen JH, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targ. 2017;16:326–38.

    Article  CAS  Google Scholar 

  2. Weiner WJ. Early diagnosis of Parkinson’s disease and initiation of treatment. Rev Neurol Dis. 2008;5:54–5.

    Google Scholar 

  3. Silverstone L. Method and apparatus for treatment of neurodegenerative diseases including depression, mild cognitive impairment, and dementia. US; 2011.

  4. Listed N. Neurotransmitters in central nervous system disease. Lancet. 1982;2:913.

    Google Scholar 

  5. Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, et al. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced invivo cardiovascular side effects in a Parkinson’s disease model. Neuropharmacology. 2015;108:440–50.

    Article  CAS  PubMed  Google Scholar 

  6. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55.

    Article  CAS  PubMed  Google Scholar 

  7. Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp. 2004;64:99–106.

    Google Scholar 

  8. Kavruk M, Ozalp VC, Oktem HA. Portable bioactive paper-based sensor for quantification of pesticides. J Anal Methods Chem. 2013;2013:932946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park DJ, Choi JH, Lee WJ, Um SH, Oh BK. Selective electrochemical detection of dopamine using reduced graphene oxide sheets-gold nanoparticles modified electrode. J Nanosci Nanotechnol. 2017;17:8012–8.

    Article  CAS  Google Scholar 

  10. Shen Y, Cheng L, Guan Q, Li H, Lu J, Wang X. Development and validation of a liquid chromatography tandem mass spectrometry method for the measurement of urinary catecholamines in diagnosis of pheochromocytoma. Biomed Chromatogr. 2017;31:e4003.

    Article  CAS  Google Scholar 

  11. Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanal. 2013;25:2515–22.

    Article  CAS  Google Scholar 

  12. Sharief M. Lumbar puncture and CSF examination. Medicine. 2004;32:44–6.

    Article  Google Scholar 

  13. Flik G, Folgering JH, Cremers TI, Westerink BH, Dremencov E. Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: in vivo microdialysis and electrophysiology study. J Mol Neurosci. 2015;56:320–8.

    Article  CAS  PubMed  Google Scholar 

  14. Holdsworth MT, Raisch DW, Winter SS, Frost JD, Moro MA, Doran NH, et al. Pain and distress from bone marrow aspirations and lumbar punctures. Ann Pharmacother. 2003;37:17–22.

    Article  CAS  PubMed  Google Scholar 

  15. Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuators B Chem. 2015;211:403–18.

    Article  CAS  Google Scholar 

  16. Deng W, Wang L, Song S, Zuo X. Biosensors in POCT application. Prog Chem. 2016;28:1341–50.

    Google Scholar 

  17. Asbeck BSV, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science. 1985;227:756–9.

    Article  PubMed  Google Scholar 

  18. Shah P, Zhu X, Li CZ. Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn. 2013;13:83–91.

    Article  CAS  PubMed  Google Scholar 

  19. Oborny NJ, Melo Costa EE, Suntornsuk L, Abreu FC, Lunte SM. Evaluation of a portable microchip electrophoresis fluorescence detection system for the analysis of amino acid neurotransmitters in brain dialysis samples. Anal Sci. 2016;32:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maughan N, Nguyen LM, Gamagedara S. Microfluidic Separation and electrochemical detection of serotonin using a portable Lab-on-a-Chip device. Anal Bioanal Electrochem. 2015;7:1–11.

    CAS  Google Scholar 

  21. Chen X, Zheng N, Chen S, Ma Q, Chen X, Zheng N, et al. Fluorescent detection of dopamine based on nitrogen-doped graphene quantum dots and visible paper based test strips. Anal Methods. 2017;9:2246–51.

    Article  CAS  Google Scholar 

  22. Sanguansap Y, Ruangpornvisuti V, Tuntulani T, Promarak V, Tomapatanaget B. Highly promising discrimination of various catecholamines using ratiometric fluorescence probes with intermolecular self-association of two sensing elements. RSC Adv. 2015;5:78468–75.

    Article  CAS  Google Scholar 

  23. Liu C, Gomez FA. A microfluidic paper-based device to assess acetylcholinesterase activity. Electrophoresis. 2017;38:1002–6.

    Article  CAS  PubMed  Google Scholar 

  24. Chandra S, Siraj S, Wong DKY. Recent advances in biosensing for neurotransmitters and disease biomarkers using microelectrodes. Chemelectrochem. 2017;4:822–33.

    Article  CAS  Google Scholar 

  25. Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron. 2018;102:540–52.

    Article  CAS  PubMed  Google Scholar 

  26. Darwin R, Dimitri I, Pierre A, Andreas M. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem. 2002;74:2623–36.

    Article  CAS  Google Scholar 

  27. Martinez AW, Phillips ST, Whitesides GM, Carrilho E, Chem A. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82:3–10.

    Article  CAS  PubMed  Google Scholar 

  28. da Costa TH, Song E, Tortorich RP, Choi JW. A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J Solid State Sci Technol. 2015;4:S3044–7.

    Article  CAS  Google Scholar 

  29. Feng QM, Cai M, Shi C-G, Bao N, Gu HY. Integrated paper-based electroanalytical devices for determination of dopamine extracted from striatum of rat. Sens Actuators B Chem. 2015;209:870–6.

    Article  CAS  Google Scholar 

  30. Zan X, Bai H, Wang C, Zhao F, Duan H. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells. Chemistry. 2016;22:5204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raj M, Gupta P, Goyal RN, Shim YBJS. Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens Actuators B Chem. 2017;239:993–1002.

    Article  CAS  Google Scholar 

  32. Li Z, Liu H, Ouyang C, Wee WH, Cui X, Lu TJ, et al. Pen-based writing: recent advances in pen-based writing electronics and their emerging applications. Adv Funct Mater. 2016;26:157.

    Article  CAS  Google Scholar 

  33. Guntupalli B, Liang P, Lee JH, Yang Y, Yu H, Canoura J, et al. Ambient filtration method to rapidly prepare highly conductive, paper-based porous gold films for electrochemical biosensing. ACS Appl Mater Interfaces. 2015;7:27049–58.

    Article  CAS  PubMed  Google Scholar 

  34. Kong Q, Wang Y, Zhang L, Xu C, Yu J. Highly sensitive microfluidic paper-based photoelectrochemical sensing platform based on reversible photo-oxidation products and morphologypreferable multi-plate ZnO nanolowers. Biosens Bioelectron. 2018;110:58.

    Article  CAS  PubMed  Google Scholar 

  35. Ruecha N, Lee J, Chae H, Cheong H, Soum V, Preechakasedkit P, et al. Paper-based digital microfluidic chip for multiple electrochemical assay operated by a wireless portable control system. Adv Mater Technol. 2017;2:1600267.

    Article  CAS  Google Scholar 

  36. Punjiya M, Moon CH, Chen Y, Sonkusale S. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:307–10.

    PubMed  Google Scholar 

  37. Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods. 2018;10:3567–81.

    Article  Google Scholar 

  38. Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.

    Article  CAS  PubMed  Google Scholar 

  39. Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30:887–98.

    Article  CAS  Google Scholar 

  40. Graziane N, Dong Y. Measuring presynaptic release probability: electrophysiological analysis of synaptic transmission. New York: Springer; 2016. p. 133–43.

    Book  Google Scholar 

  41. Carver JM. The “Chemical imbalance” in mental health problems. 2002.

  42. Shell W, Charuvastra E. Composition and method to augment and sustain neurotransmitter production. US; 2009.

  43. Studer L, Psylla M, Bühler B, Evtouchenko L, Vouga CM, Leenders KL, et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res Bull. 1996;41:143–50.

    Article  CAS  PubMed  Google Scholar 

  44. Liu L, Li Q, Li N, Ling J, Liu R, Wang Y, et al. Simultaneous determination of catecholamines and their metabolites related to Alzheimer’s disease in human urine. J Sep Sci. 2011;34:1198–204.

    Article  CAS  PubMed  Google Scholar 

  45. Puumala T, Sirvio J. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience. 1998;83:489–99.

    Article  CAS  PubMed  Google Scholar 

  46. Jakel RJ, Maragos WF. Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci. 2000;23:239–45.

    Article  CAS  PubMed  Google Scholar 

  47. Rattanarat P, Dungchai W, Siangproh W, Chailapakul O, Henry CS. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal Chim Acta. 2012;744:1–7.

    Article  CAS  PubMed  Google Scholar 

  48. Davis KLK, Kahn RS, Ko G, Davis Davidson M, Kahn RS, Davidson M. Dopamine and schizophrenia: a reconceptualization. Am J Psychiatry. 1991;148:1474–86.

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science. 1995;270:644–6.

    Article  PubMed  Google Scholar 

  50. Curtis BM, O’Keefe JH Jr. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    Article  PubMed  Google Scholar 

  51. Andersen LW, Berg KM, Saindon BZ, Massaro JM, Raymond TT, Berg RA, et al. Time to epinephrine and survival after pediatric in-hospital cardiac arrest. JAMA. 2015;314:802–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whybrow PC Jr, Prange AJ. A hypothesis of thyroid-catecholamine-receptor interaction: its relevance to affective illness. Arch Gen Psychiatry. 1981;38:106–13.

    Article  CAS  PubMed  Google Scholar 

  53. Şanlı N, Tague SE, Lunte C. Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatography with fluorescence detection. J Pharm Biomed Anal. 2015;107:217–22.

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, You Z, Li M, Pang L, Cheng J, Wang L. Protective effect of resveratrol on the brain in a rat model of epilepsy. Neurosci Bull. 2017;33:273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol. 2006;147:S109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajendra S, Schofield PR. Molecular mechanisms of inherited startle syndromes. Trends Neurosci. 1995;18:80–2.

    Article  CAS  PubMed  Google Scholar 

  57. Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, et al. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep. 2017;18:905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Euler V. Action of adrenaline, acetylcholine and other substances on nerve-free vessels (human placenta). J Physiol. 2017;93:129–43.

    Article  Google Scholar 

  59. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    Article  CAS  PubMed  Google Scholar 

  60. Hidaka A, Azuma YT, Nakajima H, Takeuchi T. Nitric oxide and carbon monoxide act as inhibitory neurotransmitters in the longitudinal muscle of C57BL/6 J mouse distal colon. J Pharmacol Sci. 2010;112:231–41.

    Article  CAS  PubMed  Google Scholar 

  61. Grossman A, Costa A, Forsling ML, Jacobs R, Kostoglou-Athanassiou I, Nappi G, et al. Gaseous neurotransmitters in the hypothalamus: the roles of nitric oxide and carbon monoxide in neuroendocrinology. Horm Metab Res. 1997;29:477–82.

    Article  CAS  PubMed  Google Scholar 

  62. Snyder SH, Jaffrey SR, Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Brain Res Rev. 1998;26:167–75.

    Article  CAS  PubMed  Google Scholar 

  63. Rőszer T. The biology of subcellular nitric oxide. Netherlands: Springer; 2012.

    Book  Google Scholar 

  64. Kumar M, Kumar P. Protective effect of spermine against pentylenetetrazole kindling epilepsy induced comorbidities in mice. Neurosci Res. 2017;120:8–17.

    Article  CAS  PubMed  Google Scholar 

  65. Lourenço CF, Ledo A, Rui MB, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radical Biol Med. 2017;108:668–82.

    Article  CAS  Google Scholar 

  66. Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57:585–630.

    Article  CAS  PubMed  Google Scholar 

  67. Montecot C, Seylaz J, Pinard E. Carbon monoxide regulates cerebral blood flow in epileptic seizures but not in hypercapnia. NeuroReport. 1998;9:2341–6.

    Article  CAS  PubMed  Google Scholar 

  68. Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017;74:1391–412.

    Article  CAS  PubMed  Google Scholar 

  69. Lee M, Sparatore A, Del Soldato P, Mcgeer E, Mcgeer PL. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia. 2010;58:103–13.

    Article  PubMed  Google Scholar 

  70. Eto K, Ogasawara M, Umemura K, Nagai Y, Kimura H. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci. 2002;22:3386–91.

    Article  CAS  PubMed  Google Scholar 

  71. Scott AP, Ratcliffe JG, Rees LH, Landon J, Bennett HPJ, Lowry PJ, et al. Pituitary peptide. Nat New Biol. 1973;244:65–7.

    Article  CAS  PubMed  Google Scholar 

  72. Gillis RA, Helke CJ, Hamilton BL, Norman WP, Jacobowitz DM. Evidence that substance P is a neurotransmitter of baro- and chemoreceptor afferents in nucleus tractus solitarius. Brain Res. 1980;181:476–81.

    Article  CAS  PubMed  Google Scholar 

  73. Otsuka M. Neurotransmitter Functions of Mammalian Tachykinins: Substance P and neurokinin A: Birkhäuser Basel, Switzerland. 1995. pp. 189–97.

  74. Schutte IW, Hollestein KB, Akkermans LM, Kroese AB. Evidence for a role of cholecystokinin as neurotransmitter in the guinea-pig enteric nervous system. Neurosci Lett. 1997;236:155–8.

    Article  CAS  PubMed  Google Scholar 

  75. Taylor GT, Manzella F. Kappa opioids, salvinorin A and major depressive disorder. Current Neuropharmacology, 2016;14,165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Holland PR. Biology of neuropeptides: orexinergic involvement in primary headache disorders. Headache J Head Face Pain. 2017;57:76–88.

    Article  Google Scholar 

  77. Russo AF. Overview of neuropeptides: awakening the senses? Headache J Head Face Pain. 2017;57:37–46.

    Article  Google Scholar 

  78. Harrison S, Geppetti P. Substance P. Int J Biochem Cell Biol. 2001;33:555–76.

    Article  CAS  PubMed  Google Scholar 

  79. Namjou K, Roller CB, Mcmillen G. Breath-analysis using mid-infrared tunable laser spectroscopy. Sensors. 2007;2007:1337–40.

    Google Scholar 

  80. Mostafalu P, Mostafalu S, Mann J, Punjiya M, Sonkusale S. Highly selective electrochemical approach for detection of DA, AA and 5-HT using material diversity with chemometrics on paper. Transducers—2015. International conference on solid-state sensors, actuators and microsystems 2015. pp. 1479–82.

  81. Domingues DS, Crevelin EJ, de Moraes LA, Hallak JEC, Souza de Crippa JA, Queiroz MEC. Simultaneous determination of amino acids and neurotransmitters in plasma samples from schizophrenic patients by hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Sep Sci. 2015;38:780–7.

    Article  CAS  PubMed  Google Scholar 

  82. Li W, Qian D, Li Y, Bao N, Gu H, Yu C. Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. J Electroanal Chem. 2016;769:72–9.

    Article  CAS  Google Scholar 

  83. Trouillon R, Gijs MAM. Paper-based polymer electrodes for bioanalysis and electrochemistry of neurotransmitters. ChemPhysChem. 2018;19:1164–72.

    Article  CAS  PubMed  Google Scholar 

  84. Loewenstein D, Stake C, Cichon M. Validation of Using Fingerstick Blood Sample with i-STAT POC Testing Device for Cardiac Troponin I Assay. Cureus (2012);4(9):e115

    Google Scholar 

  85. Punjiya M, Mostafalu P, Sonkusale S. Low-cost paper-based electrochemical sensors with CMOS readout IC. Biomedical Circuits and Systems Conference. 2014. pp. 324–7.

  86. Ferrer DG, García AG, Peris-Vicente J, Gimeno-Adelantado JV, Esteve-Romero J. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography. Anal Bioanal Chem. 2015;407:9009–18.

    Article  CAS  Google Scholar 

  87. Tsai TC, Huang FH, Chen JJJ. Selective detection of dopamine in urine with electrodes modified by gold nanodendrite and anionic self-assembled monolayer. Sens Actuators B Chem. 2013;181:179–86.

    Article  CAS  Google Scholar 

  88. Pankratov D, González-Arribas E, Blum Z, Shleev S. Tear based bioelectronics. Electroanal. 2016;28:1250–66.

    Article  CAS  Google Scholar 

  89. Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol. 1981;26:84–96.

    Article  PubMed  Google Scholar 

  90. Thomas N, Lähdesmäki I, Parviz BA. A contact lens with an integrated lactate sensor. Sens Actuators B Chem. 2012;162:128–34.

    Article  CAS  Google Scholar 

  91. Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron. 2011;26:3290–6.

    Article  CAS  PubMed  Google Scholar 

  92. Andoralov V, Shleev S, Arnebrant T, Ruzgas T. Flexible micro(bio)sensors for quantitative analysis of bioanalytes in a nanovolume of human lachrymal liquid. Anal Bioanal Chem. 2013;405:3871–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kagie A, Bishop DK, Burdick J, La Belle JT, Dymond R, Felder R, et al. Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanal. 2008;20:1610–4.

    Article  CAS  Google Scholar 

  94. Nicolodi M, Bianco ED. Sensory neuropeptides (substance P, calcitonin gene-related peptide) and vasoactive intestinal polypeptide in human saliva: their pattern in migraine and cluster headache. Cephalalgia. 1990;10:39–50.

    Article  CAS  PubMed  Google Scholar 

  95. Holsinger FC, Bui DT. Anatomy, function, and evaluation of the salivary glands. Berlin Heidelberg: Springer; 2007. p. 1–16.

    Google Scholar 

  96. Kennedy B, Dillon E, Mills PJ, Ziegler MG. Catecholamines in human saliva. Life Sci. 2001;69:87–99.

    Article  CAS  PubMed  Google Scholar 

  97. Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci Rep. 2016;6:33637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zan X, Fang Z, Wu J, Xiao F, Huo F, Duan H. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosens Bioelectron. 2013;49:71–8.

    Article  CAS  PubMed  Google Scholar 

  99. Nechaeva D, Shishov A, Ermakov S, Bulatov A. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta. 2018;183:290–6.

    Article  CAS  PubMed  Google Scholar 

  100. Hinz M, Stein A, Uncini T. Urinary neurotransmitter testing: considerations of spot baseline norepinephrine and epinephrine. Open Access J Urol. 2011;3:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davletbaeva P, Falkova M, Safonova E, Moskvin L, Bulatov A. Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine. Anal Chim Acta. 2016;911:69–74.

    Article  CAS  PubMed  Google Scholar 

  102. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing—xPOCT. Trends Biotechnol. 2017;35:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nontawong N, Amatatongchai M, Wuepchaiyaphum W, Chairam S, Pimmongkol S, Panich S, et al. Fabrication of a three-dimensional electrochemical paper-based device (3D-ePAD) for individual and simultaneous detection of ascorbic acid, dopamine and uric acid. Int J Electrochem Sci. 2018;13:6940–57.

    Article  CAS  Google Scholar 

  104. Pradela-Filho LA, Araujo DAG, Takeuchi RM, Santos AL. Nail polish and carbon powder: an attractive mixture to prepare paper-based electrodes. Electrochim Acta. 2017;258:786–92.

    Article  CAS  Google Scholar 

  105. Cai W, Lai T, Du H, Ye J. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sens Actuators B Chem. 2014;193:492–500.

    Article  CAS  Google Scholar 

  106. Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, et al. Flexible electronics based on micro/nanostructured paper. Adv Mater. 2018;30:1801588.

    Article  CAS  Google Scholar 

  107. Bollström R, Pettersson F, Dolietis P, Preston J, Osterbacka R, Toivakka M. Impact of humidity on functionality of on-paper printed electronics. Nanotechnology. 2014;25:094003.

    Article  CAS  PubMed  Google Scholar 

  108. Kuretake T, Kawahara S, Motooka M, Uno S. An electrochemical gas biosensor based on enzymes immobilized on chromatography paper for ethanol vapor detection. Sensors. 2017;17:281.

    Article  CAS  Google Scholar 

  109. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul OJB. Bioelectronics Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron. 2014;52:13–9.

    Article  CAS  PubMed  Google Scholar 

  110. Nantaphol S, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS. Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal Chem. 2017;89:4100–7.

    Article  CAS  PubMed  Google Scholar 

  111. Punjiya M, Moon CH, Matharu Z, Nejad HR, Sonkusale S. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics. Analyst. 2018;143:1059–64.

    Article  CAS  PubMed  Google Scholar 

  112. Ahv S, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–50.

    Article  CAS  Google Scholar 

  113. Tortorich RP, Song E, Choi JW. Inkjet-printed carbon nanotube electrodes with low sheet resistance for electrochemical sensor applications. J Electrochem Soc. 2013;161:B3044–8.

    Article  CAS  Google Scholar 

  114. Qin H, Zhu Z, Ji W, Zhang M. Carbon nanotube paper-based electrode for electrochemical detection of chemicals in rat microdialysate. Electroanalysis. 2018;30:1022–7.

    Article  CAS  Google Scholar 

  115. Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X, et al. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron. 2018;119:55–62.

    Article  CAS  PubMed  Google Scholar 

  116. Pereira SV, Bertolino FA, Fernándezbaldo MA, Messina GA, Salinas E, Sanz MI, et al. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst. 2011;136:4745–51.

    Article  CAS  PubMed  Google Scholar 

  117. Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, Srisa-Art M, et al. Electrochemistry on paper-based analytical devices: a review. Electroanal. 2016;28:1420–36.

    Article  CAS  Google Scholar 

  118. Gomez FJV, Martín A, Silva MF, Escarpa A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta. 2015;182:1–7.

    Article  CAS  Google Scholar 

  119. Ge L, Wang S, Yu J, Li N, Ge S, Yan M. Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater. 2013;23:3115–23.

    Article  CAS  Google Scholar 

  120. Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M, et al. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale. 2016;8:15870–9.

    Article  CAS  PubMed  Google Scholar 

  121. Zilkha E, Koshy A, Obrenovitch TP, Bennetto HP, Symon L. Amperometric biosensors for on-Line monitoring of extracellular glucose and glutamate in the brain. Anal Lett. 1994;27:453–73.

    Article  CAS  Google Scholar 

  122. Hunter GW, Xu JC, Biaggi-Labiosa AM, Laskowski D, Dutta PK, Mondal SP, et al. Smart sensor systems for human health breath monitoring applications. J Breath Res. 2011;5:037111.

    Article  CAS  PubMed  Google Scholar 

  123. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2016;89:71–91.

    Article  CAS  PubMed  Google Scholar 

  124. Nazari MH, Mazhabjafari H, Leng L, Guenther A, Genov R. CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE J Sel Top Sign Process. 2013;7:338–48.

    Google Scholar 

  125. Starke K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol. 1977;77:1–124.

    Article  CAS  PubMed  Google Scholar 

  126. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol. 1978;41:233–43.

    Article  CAS  PubMed  Google Scholar 

  127. Casadio S, Lowdon JW, Betlem K, Ueta JT, Foster CW, Cleij TJ, et al. Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chem Eng J. 2017;315:459–68.

    Article  CAS  Google Scholar 

  128. Meltzer CC, Smith G, Dekosky ST, Pollock BG, Mathis CA, Moore RY, et al. Serotonin in aging, late-life Depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacol. 1998;18:407–30.

    Article  CAS  Google Scholar 

  129. Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta. 2009;165:373–9.

    Article  CAS  Google Scholar 

  130. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84:253–6.

    Article  CAS  PubMed  Google Scholar 

  131. Chen P, Li Y, Ma J, Huang J, Chen C, Chang H. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci Rep. 2016;6:24882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li L, Zhang Y, Liu F, Su M, Liang L, Ge S, et al. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem Commun. 2015;51:14030–3.

    Article  CAS  Google Scholar 

  133. Liu M, Wu L, Sabine M, Yang G. Hydrogen sulfide signaling axis as a target for prostate cancer therapeutics. Prostate Cancer. 2016;2016:8108549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21775117), the General Financial Grant from the China Postdoctoral Science Foundation (2016M592773), the Postdoctoral Science Foundation of Shaanxi Province and the High Level Returned Overseas Students Foundation ([2018]642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, R., Niu, Y. et al. Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. J. Anal. Test. 3, 19–36 (2019). https://doi.org/10.1007/s41664-019-00085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00085-0

Keywords

Navigation