Skip to main content
Log in

Generalization of Reference System for Calculating the Second Dimension Retention Index in GC × GC–MS

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Using C4–C25 fatty acid methyl esters (C4–C25 FAMEs) as a sample reference series, a method was developed to generalize the reference system for calculating the second dimension retention index (2I) of compounds analyzed by comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS). The second dimension elution temperature (2Te), second dimension unadjusted retention time (2tR), and the linear retention index (IT) of C4–C25 FAMEs were used to form a second dimension retention index surface (2IS) via a three-dimensional surface fitting model. The 2I of an analyte analyzed by GC × GC–MS was then calculated from the 2IS based on its 2tR and 2Te. The developed method was validated by calculating the 2I of n-alkanes, 80 compounds, and two commercially available mixtures (MegaMix A and MegaMix B). Compared to the conventional method, the developed method keeps the 2I in n-alkane retention index scale, and enables using any compounds as references to obtain a much increased separation space in the second dimension GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Winnike JH, Wei X, Knagge KJ, Colman SD, Gregory SG, Zhang X. Comparison of GC–MS and GC × GC–MS in the analysis of human serum samples for biomarker discovery. J Proteome Res. 2015;14(4):1810–7.

    Article  CAS  Google Scholar 

  2. Shi X, Wei X, Yin X, Wang Y, Zhang M, Zhao C, et al. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J Proteome Res. 2015;14(2):1174–82.

    Article  CAS  Google Scholar 

  3. Shi X, Wei X, Koo I, Schmidt RH, Yin X, Kim SH, et al. Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of diet-induced fatty liver disease. J Proteome Res. 2014;13(2):547–54. https://doi.org/10.1021/pr400719u.

    Article  CAS  PubMed  Google Scholar 

  4. Shi X, Wahlang B, Wei X, Yin X, Falkner KC, Prough RA, et al. Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease. J Proteome Res. 2012;11(7):3805–15.

    Article  CAS  Google Scholar 

  5. Han J, Datla R, Chan S, Borchers CH. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis. 2009;1(9):1665–84. https://doi.org/10.4155/bio.09.158.

    Article  CAS  PubMed  Google Scholar 

  6. Warner DR, Liu H, Dastidar SG, Warner JB, Prodhan MAI, Yin X, et al. Ethanol and unsaturated dietary fat induce unique patterns of hepatic ω-6 and ω-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PLoS One. 2018;13(9):e0204119.

    Article  Google Scholar 

  7. Koo I, Kim S, Zhang X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J Chromatogr A. 2013;1298:132–8.

    Article  CAS  Google Scholar 

  8. Kim S, Zhang X. Discovery of false identification using similarity difference in GC–MS-based metabolomics. J Chemom. 2015;29(2):80–6.

    Article  CAS  Google Scholar 

  9. Wei X, Koo I, Kim S, Zhang X. Compound identification in GC–MS by simultaneously evaluating the mass spectrum and retention index. Analyst. 2014;139(10):2507–14. https://doi.org/10.1039/C3AN02171H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castello G. Retention index systems: alternatives to the n-alkanes as calibration standards. J Chromatogr A. 1999;842(1–2):51–64.

    Article  CAS  Google Scholar 

  11. Raymer J, Wiesler D, Novotny M. Structure-retention studies of model ketones by capillary gas chromatography. J Chromatogr A. 1985;325:13–22.

    Article  CAS  Google Scholar 

  12. Kersten BR, Poole CF, Furton KG. Ambiguities in the determination of McReynolds stationary phase constants. J Chromatogr A. 1987;411:43–59.

    Article  CAS  Google Scholar 

  13. Hawkes SJ. Letters to the editor: reply. J Chromatogr Sci. 1972;10((8):536. https://doi.org/10.1093/chromsci/10.8.536.

    Article  Google Scholar 

  14. Ashes J, Haken J. Gas chromatography of homologous esters: VI. Structure—retention increments of aliphatic esters. J Chromatogr A. 1974;101(1):103–23.

    Article  CAS  Google Scholar 

  15. Novák J, Rúžičková J. Generalization of the gas chromatographic retention index system. J Chromatogr A. 1974;91:79–88.

    Article  Google Scholar 

  16. Lee ML, Vassilaros DL, White CM. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1979;51(6):768–73.

    Article  CAS  Google Scholar 

  17. Vandendool H, Kratz PD. A Generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr. 1963;11:463–71.

    Article  CAS  Google Scholar 

  18. Marriott P, Shellie R. Principles and applications of comprehensive two-dimensional gas chromatography. Trends Anal Chem. 2002;21(9):573–83. https://doi.org/10.1016/S0165-9936(02)00814-2.

    Article  CAS  Google Scholar 

  19. Tranchida PQ, Purcaro G, Dugo P, Mondello L, Purcaro G. Modulators for comprehensive two-dimensional gas chromatography. Trends Anal Chem. 2011;30(9):1437–61. https://doi.org/10.1016/j.trac.2011.06.010.

    Article  CAS  Google Scholar 

  20. Murray JA. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1261:58–68. https://doi.org/10.1016/j.chroma.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  21. Phillips JB, Beens J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A. 1999;856(1):331–47. https://doi.org/10.1016/S0021-9673(99)00815-8.

    Article  CAS  PubMed  Google Scholar 

  22. Ong RCY, Marriott PJ. A review of basic concepts in comprehensive two-dimensional gas chromatography. J Chromatogr Sci. 2002;40(5):276–91. https://doi.org/10.1093/chromsci/40.5.276.

    Article  CAS  PubMed  Google Scholar 

  23. Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT. Recent developments in comprehensive two-dimensional gas chromatography (GC × GC). Trends Anal Chem. 2006;25(8):821–40. https://doi.org/10.1016/j.trac.2006.03.003.

    Article  CAS  Google Scholar 

  24. Adahchour M, Beens J, Brinkman UAT. Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A. 2008;1186(1):67–108. https://doi.org/10.1016/j.chroma.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  25. Kováts E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta. 1958;41(7):1915–32. https://doi.org/10.1002/hlca.19580410703.

    Article  Google Scholar 

  26. Zhao Y, Zhang J, Wang B, Kim SH, Fang A, Bogdanov B, et al. A method of calculating the second dimension retention index in comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A. 2011;1218(18):2577–83. https://doi.org/10.1016/j.chroma.2011.02.072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beens J, Tijssen R, Blomberg J. Prediction of comprehensive two-dimensional gas chromatographic separations. J Chromatogr A. 1998;822(2):233–51. https://doi.org/10.1016/S0021-9673(98)00649-9.

    Article  CAS  Google Scholar 

  28. Western RJ, Marriott PJ. Retention correlation maps in comprehensive two-dimensional gas chromatography. J Sep Sci. 2002;25(13):831–8. https://doi.org/10.1002/1615-9314(20020901)25:13%3c831:AID-JSSC832%3e3.0.CO;2-R.

    Article  Google Scholar 

  29. Western RJ, Marriott PJ. Methods for generating second dimension retention index data in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2003;1019(1):3–14. https://doi.org/10.1016/j.chroma.2003.09.006.

    Article  CAS  PubMed  Google Scholar 

  30. Bieri S, Marriott PJ. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography. Anal Chem. 2008;80(3):760–8. https://doi.org/10.1021/ac071367q.

    Article  CAS  PubMed  Google Scholar 

  31. Bieri S, Marriott PJ. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography. Anal Chem. 2006;78(23):8089–97. https://doi.org/10.1021/ac060869l.

    Article  CAS  PubMed  Google Scholar 

  32. Veenaas C, Haglund P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J Chromatogr A. 2017;1536:67–74.

    Article  Google Scholar 

  33. Prodhan MAI, Yin X, Kim S, McClain C, Zhang X. Surface fitting for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography mass spectrometry. J Chromatogr A. 2018;1539:62–70. https://doi.org/10.1016/j.chroma.2018.01.049.

    Article  CAS  PubMed  Google Scholar 

  34. Pacáková V, Feltl L. Chromatographic retention indices: an aid to identification of organic compounds. New York: Ellis Horwood Ltd; 1992.

    Google Scholar 

  35. Rang S, Kuningas K, Orav A, Eisen O. Capillary gas chromatography of n-alkyness: II. Variation of retention indices with temperature. J Chromatogr A. 1976;128(1):53–8.

    Article  CAS  Google Scholar 

  36. Döring CE, Estel D, Weber J, Zimmermann G, Zschummel D. Kapillar-gaschromatographische Untersuchungen an homo- und codimeren C5-Dienen. –Einige Zusammenhänge zwischen Retentionsverhalten und Struktur bzw. Konfiguration. J Prakt Chem. 1971;313(6):1081–91. https://doi.org/10.1002/prac.19713130612.

    Article  Google Scholar 

  37. Hala S, Eyem J, Burkhard J, Landa S. Retention indices of adamantanes. J Chromatogr Sci. 1970;8(4):203–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Marion McClain for review of this manuscript. This work was supported by NIH grant nos. 1P20GM113226 (CJM), 1P50AA024337 (CJM), 1U01AA021893-01 (CJM), 1U01AA021901-01 (CJM), 1U01AA022489-01A1 (CJM), and 1R01AA023681-01 (CJM). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was also supported by the Department of Veterans Affairs 1I01BX002996-01A2 (CJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 601 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodhan, M.A.I., Sleman, A.A., Kim, S. et al. Generalization of Reference System for Calculating the Second Dimension Retention Index in GC × GC–MS. J. Anal. Test. 2, 263–273 (2018). https://doi.org/10.1007/s41664-018-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0074-4

Keywords

Navigation