Skip to main content
Log in

New progress in spectroscopic probes for reactive oxygen species

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) play an important role in many critical physiological processes. However, overproduction and accumulation of ROS in vivo can damage some biomolecules and lead to a variety of diseases. Therefore, it is necessary to develop efficient methods for the detection of ROS. Spectroscopic probes have been extensively employed in this respect because of their high sensitivity and superior spatiotemporal sampling capability. In this review, representative spectroscopic probes for the common ROS developed in the recent 5 years are summarized, and discussed according to design strategies and recognition groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–43.

    Article  CAS  PubMed  Google Scholar 

  2. Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med. 2012;53:1903–18.

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22:269–85.

    Article  CAS  PubMed  Google Scholar 

  4. Chen W, Ma HM. Progress in xanthene-based spectroscopic probes for reactive oxygen species. Chin J Anal Chem. 2012;40:1311–21.

    CAS  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  6. Markesbery WR, Carney JM. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999;9:133–46.

    Article  CAS  PubMed  Google Scholar 

  7. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  CAS  PubMed  Google Scholar 

  8. Li XH, Gao XH, Shi W, Ma HM. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2014;114:590–659.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Ma HM. Design principles of spectroscopic probes for biological applications. Chem Sci. 2016;7:6309–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Shi W, Ma HM. Spectroscopic probes with changeable π-conjugated systems. Chem Commun. 2012;48:8732–44.

    Article  CAS  Google Scholar 

  11. Gomes A, Fernandes E, Lima JLFC. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005;65:45–80.

    Article  CAS  PubMed  Google Scholar 

  12. Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med. 2007;43:995–1022.

    Article  CAS  PubMed  Google Scholar 

  13. Chen XQ, Tian XZ, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40:4783–804.

    Article  CAS  PubMed  Google Scholar 

  14. Chen XQ, Wang F, Hyun JY, Wei TW, Qiang J, Ren XT, Shin I, Yoon J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2016;45:2976–3016.

    Article  CAS  PubMed  Google Scholar 

  15. Andina D, Leroux JC, Luciani P. Ratiometric fluorescent probes for the detection of reactive oxygen species. Chem Eur J. 2017;23:13549–73.

    Article  CAS  PubMed  Google Scholar 

  16. Chang MCY, Pralle A, Isacoff EY, Chang CJ. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc. 2004;26:15392–3.

    Article  CAS  Google Scholar 

  17. Yuan L, Lin WY, Xie YN, Chen B, Zhu SS. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J Am Chem Soc. 2012;134:1305–15.

    Article  CAS  PubMed  Google Scholar 

  18. Wen Y, Liu KY, Yang HR, Li Y, Lan HC, Liu Y, Zhang XY, Yi T. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal Chem. 2014;86:9970–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ren MG, Deng BB, Zhou K, Kong XQ, Wang JY, Lin WY. Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Anal Chem. 2017;89:552–5.

    Article  CAS  PubMed  Google Scholar 

  20. Xu J, Zhang Y, Yu H, Gao XD, Shao SJ. Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal Chem. 2016;88:1455–61.

    Article  CAS  PubMed  Google Scholar 

  21. Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T. Development of a highly sensitive fluorescence probe for hydrogen peroxide. J Am Chem Soc. 2011;133:10629–37.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang KM, Dou W, Li PX, Shen R, Ru JX, Liu W, Cui YM, Chen CY, Liu WS, Bai DC. A coumarin-based two-photon probe for hydrogen peroxide. Biosens Bioelectron. 2015;64:542–6.

    Article  CAS  PubMed  Google Scholar 

  23. Xie XL, Yang X, Wu TH, Li Y, Li MM, Tan Q, Wang X, Tang B. Rational design of an α-ketoamide-based near-infrared fluorescent probe specific for hydrogen peroxide in living systems. Anal Chem. 2016;88:8019–25.

    Article  CAS  PubMed  Google Scholar 

  24. Xu KH, Qiang MM, Gao W, Su RX, Li N, Gao Y, Xie YX, Kong FP, Tang B. A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem Sci. 2013;4:1079–86.

    Article  CAS  Google Scholar 

  25. Liao YX, Li K, Wu MY, Wu T, Yu XQ. A selenium-contained aggregation-induced “turn-on” fluorescent probe for hydrogen peroxide. Org Biomol Chem. 2014;12:3004–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan XQ, Yan JH, Su JH, Wang YC, He J, Wang SY, Zheng H, Xu JG. Thiospirolactone as a recognition site: rhodamine B-based fluorescent probe for imaging hypochlorous acid generated in human neutrophil cells. Sensor Actuat B Chem. 2010;150:774–80.

    Article  CAS  Google Scholar 

  27. Xu Q, Lee K, Lee S, Lee KM, Lee W, Yoon J. A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production. J Am Chem Soc. 2013;135:9944–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou J, Li LH, Shi W, Gao XH, Li XH, Ma HM. HOCl can appear in the mitochondria of macrophages during bacterial infection as revealed by a sensitive mitochondrial-targeting fluorescent probe. Chem Sci. 2015;6:4884–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chen XQ, Wang XC, Wang SJ, Shi W, Wang K, Ma HM. A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem Eur J. 2008;14:4719–24.

    Article  CAS  PubMed  Google Scholar 

  30. Long LL, Zhang DD, Li XF, Zhang JF, Zhang C, Zhou LP. A fluorescence ratiometric sensor for hypochlorite based on a novel dual-fluorophore response approach. Anal Chim Acta. 2013;775:100–5.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YR, Chen XP, Shao J, Zhang JY, Yuan Q, Miao JY, Zhao BX. A ratiometric fluorescent probe for sensing HOCl based on a coumarin-rhodamine dyad. Chem Commun. 2014;50:14241–4.

    CAS  Google Scholar 

  32. Ren MG, Deng BB, Zhou K, Kong XQ, Wang J, Xu GP, Lin WY. A lysosome-targeted and ratiometric fluorescent probe for imaging exogenous and endogenous hypochlorous acid in living cells. J Mater Chem B. 2016;4:4739–45.

    Article  CAS  Google Scholar 

  33. Hou J, Wu M, Li K, Yang J, Yu K, Xie Y, Yu X. Mitochondria-targeted colorimetric and fluorescent probes for hypochlorite and their applications for in vivo imaging. Chem Commun. 2014;50:8640–3.

    Article  CAS  Google Scholar 

  34. Yuan L, Lin WY, Xie YN, Chen B, Song JZ. Fluorescent detection of hypochlorous acid from turn-on to FRET-based ratiometry by a HOCl-mediated cyclization reaction. Chem Eur J. 2012;18:2700–6.

    Article  CAS  PubMed  Google Scholar 

  35. Yuan L, Lin WY, Yang YT, Chen H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J Am Chem Soc. 2012;134:1200–11.

    Article  CAS  PubMed  Google Scholar 

  36. Sun Z, Liu F, Chen Y, Tam PKH, Yang D. A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett. 2008;10:2171–4.

    Article  CAS  PubMed  Google Scholar 

  37. Hu JJ, Wong NK, Gu Q, Bai X, Ye S, Yang D. HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells. Org Lett. 2014;16:3544–7.

    Article  CAS  PubMed  Google Scholar 

  38. Hu JJ, Wong NK, Lu M, Chen X, Ye S, Zhao AQ, Gao P, Kao RY, Shen J, Yang D. HKOCl-3: a fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay. Chem Sci. 2016;7:2094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo T, Cui L, Shen J, Wang R, Zhu W, Xu Y, Qian X. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells. Chem Commun. 2013;49:1862–4.

    Article  CAS  Google Scholar 

  40. Reja SI, Bhalla V, Sharma A, Kaurb G, Kumar M. A highly selective fluorescent probe for hypochlorite and its endogenous imaging in living cells. Chem Commun. 2014;50:11911–4.

    Article  CAS  Google Scholar 

  41. Cheng GH, Fan JL, Sun W, Sui K, Jin X, Wang JY, Peng XJ. A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst. 2013;138:6091–6.

    Article  CAS  PubMed  Google Scholar 

  42. Emrullahoglu M, Ucuncu M, Karakus E. A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem Commun. 2013;49:7836–8.

    Article  CAS  Google Scholar 

  43. Liu S, Wu S. Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Org Lett. 2013;15:878–81.

    Article  CAS  PubMed  Google Scholar 

  44. Wang BS, Li P, Yu FB, Song P, Sun XF, Yang SQ, Lou ZR, Han KL. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem Commun. 2013;49:1014–6.

    Article  CAS  Google Scholar 

  45. Lou ZR, Li P, Pan Q, Han KL. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide. Chem Commun. 2013;49:2445–7.

    Article  CAS  Google Scholar 

  46. Cheng GH, Fan JL, Sun W, Cao JF, Hu C, Peng XJ. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Chem Commun. 2014;50:1018–20.

    Article  CAS  Google Scholar 

  47. Yuan L, Wang L, Agrawalla BK, Park S, Zhu H, Sivaraman B, Peng JJ, Xu Q, Chang Y. Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model. J Am Chem Soc. 2015;137:5930–8.

    Article  CAS  PubMed  Google Scholar 

  48. Cao JJ, Jiang D, Ren X, Li T, Gong X, Yang Y, Xu Z, Sun C, Shi Z, Zhang SX, Zhang H. A highly selective two-photon probe with large turn-on signal for imaging endogenous HOCl in living cells. Dyes Pigm. 2017;146:279–86.

    Article  CAS  Google Scholar 

  49. Xu QL, Heo CH, Kim G, Lee HW, Kim HM, Yoon J. Development of imidazoline-2-thiones based two-photon fluorescence probes for imaging hypochlorite generation in a co-culture system. Angew Chem Int Ed. 2015;54:4890–4.

    Article  CAS  Google Scholar 

  50. Peng T, Wong N, Chen XM, Chan Y, Ho DH, Sun ZN, Hu JJ, Shen JG, El-Nezami H, Yang D. Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues. J Am Chem Soc. 2014;136:11728–34.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang HX, Liu J, Sun YQ, Huo YY, Li YH, Liu WZ, Wu X, Zhu NS, Shi YW, Guo W. A mitochondria-targetable fluorescent probe for peroxynitrite: fast response and high selectivity. Chem Commun. 2015;51:2721–4.

    Article  CAS  Google Scholar 

  52. Park JH, Heo CH, Kim HM, Hong JI. Two-photon fluorescent probe for peroxynitrite. Tetrahedron Lett. 2016;57:715–8.

    Article  CAS  Google Scholar 

  53. Li J, Lim CS, Kim G, Kim HM, Yoon J. Highly selective and sensitive two-photon fluorescence probe for endogenous peroxynitrite detection and its applications in living cells and tissues. Anal Chem. 2017;89:8496–500.

    Article  CAS  PubMed  Google Scholar 

  54. Yu FB, Song P, Li P, Wang BS, Han KL. A fluorescent probe directly detect peroxynitrite based on boronate oxidation and its applications for fluorescence imaging in living cells. Analyst. 2012;137:3740–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Park J, Lee H, Choi Y, Kim Y. A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chem Commun. 2014;50:9353–6.

    Article  CAS  Google Scholar 

  56. Zhou J, Li Y, Shen JN, Li Q, Wang R, Xu YF, Qian XH. A ratiometric fluorescent probe for fast and sensitive detection of peroxynitrite: a boronate ester as the receptor to initiate a cascade reaction. RSC Adv. 2014;4:51589–92.

    Article  CAS  Google Scholar 

  57. Li HY, Li XH, Wu XF, Shi W, Ma HM. Observation of the generation of ONOO in mitochondria under various stimuli with a sensitive fluorescence probe. Anal Chem. 2017;89:5519–25.

    Article  CAS  PubMed  Google Scholar 

  58. Yu FB, Li P, Li GY, Zhao GJ, Chu TS, Han KL. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J Am Chem Soc. 2011;133:11030–3.

    Article  CAS  PubMed  Google Scholar 

  59. Xu KH, Chen HC, Tian JW, Ding BY, Xie YX, Qiang MM, Tang B. A near-infrared reversible fluorescent probe for peroxynitrite and imaging of redox cycles in living cells. Chem Commun. 2011;47:9468–70.

    Article  CAS  Google Scholar 

  60. Yu FB, Li P, Wang BS, Han KL. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J Am Chem Soc. 2013;135:7674–80.

    Article  CAS  PubMed  Google Scholar 

  61. Jia XT, Chen QQ, Yang YF, Tang Y, Wang R, Xu YF, Zhu WP, Qian XH. FRET-based mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: dyad of Cy3 and Cy5. J Am Chem Soc. 2016;138:10778–81.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou X, Kwon Y, Kim G, Ryu JH, Yoon J. A ratiometric fluorescent probe based on a coumarin-hemicyanine scaffold for sensitive and selective detection of endogenous peroxynitrite. Biosens Bioelectron. 2015;64:285–91.

    Article  CAS  PubMed  Google Scholar 

  63. Peng JJ, Samanta A, Zeng X, Han SY, Wang L, Su DD, Loong DTB, Kang NY, Park SJ, All AH, Jiang WX, Yuan L, Liu XG, Chang YT. Real-time in vivo hepatotoxicity monitoring through chromophore conjugated photon-upconverting nanoprobes. Angew Chem Int Ed. 2017;56:4165–9.

    Article  CAS  Google Scholar 

  64. Cheng D, Pan Y, Wang L, Zeng ZB, Yuan L, Zhang XB, Chang YT. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc. 2017;139:285–92.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang QJ, Zhu ZC, Zheng YL, Cheng JG, Zhang N, Long YT, Zheng J, Qian XH, Yang YJ. A three-channel fluorescent probe that distinguishes peroxynitrite from hypochlorite. J Am Chem Soc. 2012;134:18479–82.

    Article  CAS  PubMed  Google Scholar 

  66. Miao JF, Huo YY, Liu Q, Li Z, Shi HP, Shi YW, Guo W. A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials. 2016;107:33–43.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang W, Li P, Yang F, Hu XF, Sun CZ, Zhang W, Chen DZ, Tang B. Dynamic and reversible fluorescence imaging of superoxide anion fluctuations in live cells and in vivo. J Am Chem Soc. 2013;135:14956–9.

    Article  CAS  PubMed  Google Scholar 

  68. Xiao HB, Liu X, Wu CC, Wu YH, Li P, Guo XM, Tang B. A new endoplasmic reticulum-targeted two-photon fluorescent probe for imaging of superoxide anion in diabetic mice. Biosens Bioelectron. 2017;91:449–55.

    Article  CAS  PubMed  Google Scholar 

  69. Li RQ, Mao ZQ, Rong L, Wu N, Lei Q, Zhu JY, Zhuang L, Zhang XZ, Liu ZH. A two-photon fluorescent probe for exogenous and endogenous superoxide anion imaging in vitro and in vivo. Biosens Bioelectron. 2017;87:73–80.

    Article  CAS  PubMed  Google Scholar 

  70. Yu FB, Gao M, Li M, Chen LX. A dual response near-infrared fluorescent probe for hydrogen polysulfides and superoxide anion detection in cells and in vivo. Biomaterials. 2015;63:93–101.

    Article  CAS  PubMed  Google Scholar 

  71. Yu ZH, Chung CYS, Tang FK, Brewer TF, Au-Yeung HY. A modular trigger for the development of selective superoxide probes. Chem Commun. 2017;53:10042–5.

    Article  CAS  Google Scholar 

  72. Huang H, Dong FY, Tian Y. Mitochondria-targeted ratiometric fluorescent nanosensor for simultaneous biosensing and imaging of O ·−2 and pH in live cells. Anal Chem. 2016;88:12294–302.

    Article  CAS  PubMed  Google Scholar 

  73. Yang LM, Chen YY, Yu ZZ, Pan W, Wang HY, Li N, Tang B. Dual-ratiometric fluorescent nanoprobe for visualizing the dynamic process of pH and superoxide anion changes in autophagy and apoptosis. ACS Appl Mater Interfaces. 2017;9:27512–21.

    Article  CAS  PubMed  Google Scholar 

  74. Li P, Liu L, Xiao HB, Zhang W, Wang LL, Tang B. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J Am Chem Soc. 2016;138:2893–6.

    Article  CAS  PubMed  Google Scholar 

  75. Hu JJ, Wong NK, Ye S, Chen XM, Lu MY, Zhao AQ, Guo YH, Ma ACH, Leung AYH, Shen JG, Yang D. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J Am Chem Soc. 2015;137:6837–43.

    Article  CAS  PubMed  Google Scholar 

  76. Lu DQ, Zhou LY, Wang RW, Zhang XB, He L, Zhang J, Hu XX, Tan WH. A two-photon fluorescent probe for endogenous superoxide anion radical detection and imaging in living cells and tissues. Sensor Actuat B Chem. 2017;250:259–66.

    Article  CAS  Google Scholar 

  77. Zhang JJ, Li CW, Zhang R, Zhang FY, Liu W, Liu XY, Lee SMY, Zhang HX. A phosphinate-based near-infrared fluorescence probe for imaging the superoxide radical anion in vitro and in vivo. Chem Commun. 2016;52:2679–82.

    Article  CAS  Google Scholar 

  78. Gao XY, Feng GX, Manghnani PN, Hu F, Jiang N, Liu JZ, Liu B, Sun JZ, Tang BZ. A two-channel responsive fluorescent probe with AIE characteristics and its application for selective imaging of superoxide anions in living cells. Chem Commun. 2017;53:1653–6.

    Article  CAS  Google Scholar 

  79. Bai XY, Huang YY, Lu MY, Yang D. HKOH-1: a highly sensitive and selective fluorescent probe for detecting endogenous hydroxyl radical in living cells. Angew Chem Int Ed. 2017;56:12873–7.

    Article  CAS  Google Scholar 

  80. Liu F, Du J, Song D, Xu MY, Sun GP. A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish. Chem Commun. 2016;52:4636–9.

    Article  CAS  Google Scholar 

  81. Li Z, Liang T, Lv SW, Zhuang QG, Liu ZH. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J Am Chem Soc. 2015;137:11179–85.

    Article  CAS  PubMed  Google Scholar 

  82. Guo QW, Liu YX, Jia Q, Zhang G, Fan HM, Liu LD, Zhou J. Ultrahigh sensitivity multifunctional nanoprobe for the detection of hydroxyl radical and evaluation of heavy metal induced oxidative stress in live hepatocyte. Anal Chem. 2017;89:4986–93.

    Article  CAS  PubMed  Google Scholar 

  83. Yuan L, Lin WY, Song JZ. Ratiometric fluorescent detection of intracellular hydroxyl radicals based on a hybrid coumarin-cyanine platform. Chem Commun. 2010;46:7930–2.

    Article  CAS  Google Scholar 

  84. Wang JY, Liu ZR, Ren MG, Kong XQ, Liu KY, Deng BB, Lin WY. A fast-responsive turn on fluorescent probe for detecting endogenous hydroxyl radicals based on a hybrid carbazole-cyanine platform. Sensor Actuat B Chem. 2016;236:60–6.

    Article  CAS  Google Scholar 

  85. Kim M, Ko SK, Kim H, Shin I, Tae J. Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals. Chem Commun. 2013;49:7959–61.

    Article  CAS  Google Scholar 

  86. Meng LY, Wu YQ, Yi T. A ratiometric fluorescent probe for the detection of hydroxyl radicals in living cells. Chem Commun. 2014;50:4843–5.

    Article  CAS  Google Scholar 

  87. Zhang RL, Zhao J, Han GM, Liu ZJ, Liu C, Zhang C, Liu BH, Jiang CL, Liu RY, Zhao TT, Han MY, Zhang ZP. Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J Am Chem Soc. 2016;138:3769–78.

    Article  CAS  PubMed  Google Scholar 

  88. Yu HB, Xiao Y, Jin LJ. A lysosome-targetable and two-photon fluorescent probe for monitoring endogenous and exogenous nitric oxide in living cells. J Am Chem Soc. 2012;134:17486–9.

    Article  CAS  PubMed  Google Scholar 

  89. Yu HB, Zhang XF, Xiao Y, Zou W, Wang LP, Jin LJ. Targetable fluorescent probe for monitoring exogenous and endogenous NO in mitochondria of living cells. Anal Chem. 2013;85:7076–84.

    Article  CAS  PubMed  Google Scholar 

  90. Yu HB, Jin LJ, Dai Y, Li HQ, Xiao Y. From a BODIPY-rhodamine scaffold to a ratiometric fluorescent probe for nitric oxide. New J Chem. 2013;37:1688–91.

    Article  CAS  Google Scholar 

  91. Dong XH, Heo CH, Chen SY, Kim HM, Liu ZH. Quinoline-based two-photon fluorescent probe for nitric oxide in live cells and tissues. Anal Chem. 2014;86:308–11.

    Article  CAS  PubMed  Google Scholar 

  92. Sun YQ, Liu J, Zhang HX, Huo YY, Lv X, Shi WY, Guo W. A mitochondria-targetable fluorescent probe for dual-channel NO imaging assisted by intracellular cysteine and glutathione. J Am Chem Soc. 2014;136:12520–3.

    Article  CAS  PubMed  Google Scholar 

  93. Hu XY, Wang J, Zhu X, Dong DP, Zhang XL, Wu S, Duan CY. A copper(II) rhodamine complex with a tripodal ligand as a highly selective fluorescence imaging agent for nitric oxide. Chem Commun. 2011;47:11507–9.

    Article  CAS  Google Scholar 

  94. Sun XL, Xu YF, Zhu WP, He CS, Xu L, Yang YJ, Qian XH. Copper-promoted probe for nitric oxide based on o-phenylenediamine: large blue-shift in absorption and fluorescence enhancement. Anal Methods. 2012;4:919–22.

    Article  CAS  Google Scholar 

  95. Sun CD, Shi W, Song YC, Chen W, Ma HM. An unprecedented strategy for selective and sensitive fluorescence detection of nitric oxide based on its reaction with a selenide. Chem Commun. 2011;47:8638–40.

    Article  CAS  Google Scholar 

  96. Shiue TW, Chen YH, Wu CM, Singh G, Chen HY, Hung CH, Liaw WF, Wang YM. Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg Chem. 2012;51:5400–8.

    Article  CAS  PubMed  Google Scholar 

  97. Huo YY, Miao JF, Li YP, Shi YW, Shi HP, Guo W. Aromatic primary monoamine-based fast-response and highly specific fluorescent probes for imaging the biological signaling molecule nitric oxide in living cells and organisms. J Mater Chem B. 2017;5:2483–90.

    Article  CAS  Google Scholar 

  98. Miao JF, Huo YY, Lv X, Li Z, Cao HL, Shi HP, Shi YW, Guo W. Fast-response and highly selective fluorescent probes for biological signaling molecule NO based on N-nitrosation of electron-rich aromatic secondary amines. Biomaterials. 2016;78:11–9.

    Article  CAS  PubMed  Google Scholar 

  99. Mao ZQ, Jiang H, Song XJ, Hu W, Liu ZH. Development of a silicon-rhodamine based near-infrared emissive two-photon fluorescent probe for nitric oxide. Anal Chem. 2017;89:9620–4.

    Article  CAS  PubMed  Google Scholar 

  100. Li XH, Zhang GX, Ma HM, Zhang DQ, Li J, Zhu DB. 4,5-Dimethylthio-4′-[2-(9-anthryloxy)- ethylthio]tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen. J Am Chem Soc. 2004;126:11543–8.

    Article  CAS  PubMed  Google Scholar 

  101. Filatov MA, Karuthedath S, Polestshuk PM, Savoie H, Flanagan KJ, Sy C, Sitte E, Telitchko M, Laquai F, Boyle RW, Senge MO. Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro. J Am Chem Soc. 2017;139:6282–5.

    Article  CAS  PubMed  Google Scholar 

  102. Kim S, Tachikawa T, Fujitsuka M, Majima T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J Am Chem Soc. 2014;136:11707–15.

    Article  CAS  PubMed  Google Scholar 

  103. Wrobel AT, Johnstone TC, Liang AD, Lippard SJ, Rivera-Fuentes P. A fast and selective near-infrared fluorescent sensor for multicolor imaging of biological nitroxyl (HNO). J Am Chem Soc. 2014;136:4697–705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Zheng KB, Lin WY, Cheng D, Chen H, Liu Y, Liu KY. A two-photon fluorescent turn-on probe for nitroxyl (HNO) and its bioimaging application in living tissues. Chem Commun. 2015;51:5754–7.

    Article  CAS  Google Scholar 

  105. Zhang YY, Shi W, Li XH, Ma HM. Sensitive detection of ozone by a practical resorufin-based spectroscopic probe with extremely low background signal. Sci Rep. 2013;3:2830.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support from the NSF of China (Grants 21535009, and 21621062), the Ministry of Science and Technology (Grant 2015CB932001), and the Chinese Academy of Sciences (Grant XDB14030102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ma, H. New progress in spectroscopic probes for reactive oxygen species. J. Anal. Test. 2, 2–19 (2018). https://doi.org/10.1007/s41664-018-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0049-5

Keywords

Navigation