Skip to main content
Log in

Recent Development of Gas–Solid Phase Chemiluminescence

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Serving as a classic and interesting strategy, gas–solid phase chemiluminescence (CL) has recently been a rapidly growing area where CL is emitted through chemical reactions between gas and solid reactants occurred on the surface of solid matter. This CL system provided a sensitive and simple spectral method for investigating gas–solid phase reactions while information on the rate constants, intermediate productions, surface states and reaction mechanisms of interaction could be acquired. Recent progresses mainly concentrate on development of new gas–solid phase CL systems and their practical applications. This review paper summarized main classifications, mechanisms and applications of gas–solid phase CL. The future prospects for gas–solid phase CL are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen H, Lin L, Li H, Lin JM. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263–264:86–100.

    Article  Google Scholar 

  2. Lara FJ, Airado-Rodríguez D, Moreno-González D, Huertas-Pérez JF, García-Campaña AM. Applications of capillary electrophoresis with chemiluminescence detection in clinical, environmental and food analysis. A review. Anal Chim Acta. 2016;913:22–40.

    Article  CAS  Google Scholar 

  3. Magalhães CM, Jc EDS, Pinto DSL. Chemiluminescence and bioluminescence as an excitation source in the photodynamic therapy of cancer: a critical review. ChemPhysChem. 2016;17:2286–94.

    Article  Google Scholar 

  4. Lin Z, Chen H, Lin JM. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst. 2013;138:5182–93.

    Article  CAS  Google Scholar 

  5. Wang X, Lin JM, Liu ML, Cheng XL. Flow-based luminescence-sensing methods for environmental water analysis. TrAC Trends Anal Chem. 2009;28:75–87.

    Article  Google Scholar 

  6. Marquette CA, Blum LJ. Chemiluminescent enzyme immunoassays: a review of bioanalytical applications. Bioanalysis. 2009;1:1259–69.

    Article  CAS  Google Scholar 

  7. Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review. Talanta. 2000;51:415–39.

    Article  CAS  Google Scholar 

  8. Liu M, Zhen L, Lin JM. A review on applications of chemiluminescence detection in food analysis. Anal Chim Acta. 2010;670:1–10.

    Article  CAS  Google Scholar 

  9. Mestre YF, Zamora LL, Calatayud JM. Flow-chemiluminescence: a growing modality of pharmaceutical analysis. Luminescence. 2001;16:213–35.

    Article  CAS  Google Scholar 

  10. Styrov VV, Tolmacheva ND, Tyurin YI, Shigalugov SK, Khoruzhii VD, Sivov YA, et al. On the heterogeneous chemiluminescence of Y2O2S crystal phosphors activated by europium. J Surf Investig-X-Ra. 2014;8:1158–60.

    Article  CAS  Google Scholar 

  11. Shigalugov SK, Tyurin YI, Styrov VV, Tolmacheva ND. Heterogeneous chemiluminescence of crystallophosphor catalysts in the CO + O mixture. Kinet Catal. 2000;41:531–7.

    Article  CAS  Google Scholar 

  12. Long SR, Lee YP, Krogh OD, Pimentel GC. The chemiluminescent reactions Ba + N2O and Ba + O3 in solid argon. J Chem Phys. 1982;77:226–33.

    Article  CAS  Google Scholar 

  13. Lagerqvist A, Lind E, Barrow RF. The band-spectrum of barium oxide. Proc Phys Soc. 1950;63:1132–41.

    Article  Google Scholar 

  14. Brom JM Jr, Hewett WD Jr, Weltner W Jr. Optical spectra of Be atoms and Be2 molecules in rare gas matrices. J Chem Phys. 1975;62:3122–30.

    Article  CAS  Google Scholar 

  15. Wei C, Guo S, Lee Y. Chemiluminescence of CaO from the Ca + N2O and Ca + O3 reactions in solid argon. J Chem Phys. 1985;82:2942–6.

    Article  CAS  Google Scholar 

  16. Marks RF, Schweda HS, Gottscho RA, Field RW. The orange arc bands of CaO. Analysis of a D, d 1, 3Δ − a 3Π system. J Chem Phys. 1982;76:4689–91.

    Article  CAS  Google Scholar 

  17. Brinkmann U, Telle H. Luminescent reactive collisions between excited Ca atoms and HCl, Cl2. J Phys B At Mol Phys. 1977;10:133–9.

    Article  CAS  Google Scholar 

  18. Zhang D, Zheng Y, Dou X, Lin H, Shah SN, Lin JM. Heterogeneous chemiluminescence from gas–solid phase interactions of ozone with alcohols, phenols and saccharides. Langmuir. 2017;33:3666–71.

    Article  CAS  Google Scholar 

  19. Bowie RM. The color and intensity of the chemiluminescence of solid sodium. J Opt Soc Am. 1931;21:507–12.

    Article  CAS  Google Scholar 

  20. Bowie RM. The chemiluminescence of solid sodium. J Phys Chem. 2002;35:2964–7.

    Article  Google Scholar 

  21. Campbell DH, Hulsizer S, Edwards T, Weaver DP. Solid propellant combustion zone structure from analysis of hydroxylradical chemiluminescence. J Propul Power. 2012;2:414–22.

    Article  Google Scholar 

  22. Jens ET, Miller VA, Cantwell BJ. Schlieren and OH* chemiluminescence imaging of combustion in a turbulent boundary layer over a solid fuel. Exp Fluids. 2016;57:39–55.

    Article  Google Scholar 

  23. Zlatkevich L. Chemiluminescence and oxidation of polypropylene: comments on the heterogeneous model. Polym Degrad Stab. 1995;50:83–7.

    Article  CAS  Google Scholar 

  24. Jr JMB, Lepak EJ. Afterglow from the photodissociation OCS in an argon matrix at 4K. Chem Phys Lett. 1976;41:185–7.

    Article  Google Scholar 

  25. Lee YP, Pimentel GC. Chemiluminescence of S2 in solid argon. J Chem Phys. 1979;70:692–8.

    Article  CAS  Google Scholar 

  26. Narasimham NA, Sethuraman V, Apparao KVSR. Near-infrared bands of S2: 3∏g-3∆u system. J Mol Spectrosc. 1976;59:142–52.

    Article  CAS  Google Scholar 

  27. Kiljunen T, Eloranta J, Kunttu H, Khriachtchev L, Pettersson M, Räsänen M. Electronic structure and short-range recombination dynamics of S2 in solid argon. J Chem Phys. 2000;112:7475–83.

    Article  CAS  Google Scholar 

  28. Lee YP, Pimentel GC. Chemiluminescence of SO (\( \tilde{c} \) 1Σ→ã 1∆) in solid argon. J Chem Phys. 1978;69:3063–8.

    Article  CAS  Google Scholar 

  29. Davies PB, Wayne FD, Stone AJ. The gas-phase electron paramagnetic resonance spectrum of vibrationally excited SO radicals. Mol Phys. 1974;28:1409–22.

    Article  CAS  Google Scholar 

  30. Craig DP, Thirunamachandran T. d Orbitals in the excited sulfur atom. J Chem Phys. 1966;45:3355–64.

    Article  CAS  Google Scholar 

  31. Tevault DE, Smardzewski RR. Chemiluminescent reactions of sulfur atoms and oxygen atoms in solid argon matrices. SO chemiluminescence. J Chem Phys. 1978;69:3182–9.

    Article  CAS  Google Scholar 

  32. Smardzewski RR, Lin MC. Matrix reactions of oxygen atoms with H2S molecules. J Chem Phys. 1977;66:3197–204.

    Article  CAS  Google Scholar 

  33. Simpson TB, Bloembergen N. Infrared multiphoton dissociation of SO2. Mass Spectrom Rev. 1984;28:390–424.

    Google Scholar 

  34. Grankin VP, Grankina ND, Klimov YV, Tyurin YI. A study of recombination of hydrogen atoms on the surface of solids by the chemiluminescence method. Russ J Phys Chem. 1996;70:1729–34.

    Google Scholar 

  35. Gillespie RD Jr, Burwell RL, Marks TJ. Isotopic exchange between H2 and D2 by the Rideal–Eley mechanism. Catal Lett. 1991;9:363–8.

    Article  CAS  Google Scholar 

  36. Morisset S, Aguillon F, Sizun M, Sidis V. Wave-packet study of H2 formation on a graphite surface through the Langmuir–Hinshelwood mechanism. J Chem Phys. 2005;122:194702.

    Article  CAS  Google Scholar 

  37. Tyurin YA, Styrov VV, Khoruzhii VD, Gorbachev AF, editors. Heterogeneous chemiluminescence (GHL) of the ZnSCdS-Cu and phosphors activated by Re ions. In: Russian–Korean International Symposium on Science and Technology, vol. 1. 2001. p. 331–4.

  38. Sivov YA, Tyurin YI, Choruzhii VD. Electron-hole pairs multiquantum generation mechanism in the process of excitation of ZnSCdS-Cu by an atomic hydrogen. Physics. 2000;5:1–5.

    Google Scholar 

  39. Styrov VV, Tyutyunnikov VI, Sergeev OT, Oya Y, Okuno K. Chemical reactions of atomic hydrogen at SiC surface and heterogeneous chemiluminescence. J Phys Chem Solids. 2005;66:513–20.

    Article  CAS  Google Scholar 

  40. Sreekumar P, Jayaraman VK, Kulkarni BD. Monte Carlo and cellular automata modeling of CO oxidation on a catalytic surface including the Eley–Rideal step and CO diffusion. Ind Eng Chem Res. 1998;37:2188–92.

    Article  CAS  Google Scholar 

  41. Mai J, Niessen WV. The influence of physisorption and the Eley–Rideal mechanism on a surface reaction: CO + O2. Chem Phys. 1991;156:63–9.

    Article  CAS  Google Scholar 

  42. Styrov V, Tyurin YI. Ionization mechanism of excitation of heterogeneous chemiluminescence. II. Sov Phys J. 1979;22:519–23.

    Article  Google Scholar 

  43. Grankin VP, Grankina ND, Klimov YV, Styrov VV. Unsteady-state methods of investigation of the heterogeneous chemiluminescence of phosphor crystals. J Appl Spectrosc. 1995;62:578–81.

    Article  Google Scholar 

  44. Grankin VP, Aleshin SV. Heterogeneous chemiluminescence of crystal phosphors on x-ray or UV irradiation. J Appl Spectrosc. 2002;69:752–60.

    Article  CAS  Google Scholar 

  45. Tyurin YI, Styrov V. Ionizational mechanism of heterogeneous chemiluminescence excitation. I. Sov Phys J. 1979;22:409–14.

    Article  Google Scholar 

  46. Grankin VP, Styrov VV, Karpov EG. Chemiluminescent detection of neutral gaseous radicals. J Chem Phys. 2007;127:134709.

    Article  CAS  Google Scholar 

  47. Ablblad G, Stenberg B, Terselius B, Reitberger T. Imaging chemiluminescence instrument for the study of heterogeneous oxidation effects in polymers. Polym Test. 1997;16:59–73.

    Article  CAS  Google Scholar 

  48. Pronko JG, Chapman IV. Microcomputer-controlled chemiluminescence spectrometer for solid phase samples. Rev Sci Instrum. 1986;57:191–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21227006, 21435002, 81373373, 21621003). The authors declare no competing financial interests. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lin, JM. Recent Development of Gas–Solid Phase Chemiluminescence. J. Anal. Test. 1, 267–273 (2017). https://doi.org/10.1007/s41664-017-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0043-3

Keywords

Navigation