Skip to main content

Advertisement

Log in

Polystyrene Microspheres Coupled with Hybridization Chain Reaction for Dual-Amplified Chemiluminescence Detection of Specific DNA Sequences

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

We report on a highly sensitive chemiluminescence (CL) assay for the detection of specific DNA sequence, where streptavidin-modified polystyrene microspheres (PS–SA) coupled with hybridization chain reaction (HCR) were employed as dual amplification platform. Briefly, a “sandwich-type” detection strategy was proposed in our design, which involved capture probe DNA immobilized on the surface of carboxyl-terminated magnetic beads (MB) and the reporter DNA combined with the HCR trigger immobilized on the surface of PS–SA. After that, two hairpin-type monomers were added to initiate the HCR. In the detection system, CL signal was obtained via the instantaneous derivatization reaction between 3,4,5-trimethoxylphenylglyoxal (TMPG) and guanine bases in the target and the HCR complex binding on the magnetic beads. As compared to traditional sandwich type (capture/target/reporter) assays, this dual-amplified strategy for sequence-specific DNA detection showed better specificity, lower detection limit and wider linear response range (linear range of 0.01 fmol–10 pmol and a low detection limit of 5 amol). Moreover, this approach could be easily extended to detect a wide range of specific DNA sequences by modification of the hybridization region. We believe this simple technique will present a significant step towards early diagnoses of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;70:467–70.

    Article  Google Scholar 

  2. Husale S, Persson HH, Sahin O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature. 2009;462:1075–8.

    Article  CAS  Google Scholar 

  3. Lam B, Das J, Holmes RD, Live L, Sage A, Sargent EH, Kelley SO. Solution-based circuits enable rapid and multiplexed pathogen detection. Nat Commun. 2013;4:2001–8.

    Google Scholar 

  4. Xiao HJ, Hak HC, Kong DM, Shen HX. Sequence-specific detection of nucleic acids utilizing isothermal enrichment of G-quadruplex DNAzymes. Anal Chim Acta. 2012;729:67–72.

    Article  CAS  Google Scholar 

  5. Li C, Karadeniz H, Canavar E, Erdem A. Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochim Acta. 2012;82:137–42.

    Article  CAS  Google Scholar 

  6. Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteom Clin Appl. 2016;10:1148–58.

    Article  CAS  Google Scholar 

  7. Ye KH, Manzano M, Muzzi R, Gin KYH, Saeidi N, Goh SG, Tok AIY, Marks RS. Development of a chemiluminescent DNA fibre optic genosensor to Hepatitis A Virus (HAV). Talanta. 2017;174:401–8.

    Article  CAS  Google Scholar 

  8. Zou B, Ma Y, Wu H, Zhou G. Signal amplification by rolling circle amplification on universal flaps yielded from target-specific invasive reaction. Analyst. 2012;137:729–34.

    Article  CAS  Google Scholar 

  9. Wang X, Lou X, Wang Y, Guo Q, Fang Z, Zhong X, Mao H, Jin Q, Wu L, Zhao H, Zhao J. QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosens Bioelectron. 2010;25:1934–40.

    Article  CAS  Google Scholar 

  10. Chen XH, Roloff A, Seitz O. Consecutive signal amplification for DNA detection based on de novo fluorophore synthesis and host–guest chemistry. Angew Chem Int Ed. 2012;51:4479–83.

    Article  CAS  Google Scholar 

  11. Niu S, Jiang Y, Zhang S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chem Commun. 2010;46:3089–91.

    Article  CAS  Google Scholar 

  12. Qi YY, Xiu FR, Li BX. One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles. Anal Biochem. 2014;449:1–8.

    Article  CAS  Google Scholar 

  13. Cai S, Lau CW, Lu JZ. Sequence-specific detection of short-length DNA via template-dependent surface-hybridization events. Anal Chem. 2010;82:7178–84.

    Article  CAS  Google Scholar 

  14. Qi Y, Li B. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Chem Eur J. 2011;17:1642–8.

    Article  CAS  Google Scholar 

  15. Bi S, Zhao T, Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun. 2012;48:106–8.

    Article  CAS  Google Scholar 

  16. Wang HQ, Liu WY, Wu Z, Tang LJ, Xu XM, Yu RQ, Jiang JH. Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection. Anal Chem. 2011;83:1883–9.

    Article  CAS  Google Scholar 

  17. Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, Yu R. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem. 2010;82:2811–6.

    Article  CAS  Google Scholar 

  18. Liu Y, Wu Z, Zhou G, He Z, Zhou X, Shen A, Hu J. Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles. Chem Commun. 2012;48:3164–6.

    Article  CAS  Google Scholar 

  19. Vezocnik V, Rebolj K, Sitar S, Otaa K, Znidari MT, Strus J, Sepci K, Pahovnik D, Macek P, Zagar E. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering. J Chromatogr A. 2015;1418:185–91.

    Article  CAS  Google Scholar 

  20. Branch SD, Lines AM, Lynch J, Bello JM, Heineman WR, Bryan SA. Optically transparent thin-film electrode chip for spectroelectrochemical sensing. Anal Chem. 2017;89:7324–32.

    Article  CAS  Google Scholar 

  21. Chuang TL, Wei CS, Lee SY, Lin CW. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosens Bioelectron. 2012;32:89–95.

    Article  CAS  Google Scholar 

  22. Zhai J, Cui H, Yang R. DNA based biosensors. Biotechnol Adv. 1997;15:43–58.

    Article  CAS  Google Scholar 

  23. Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science. 2002;295:1503–6.

    Article  CAS  Google Scholar 

  24. Zhang Y, Pothukuchy A, Shin W, Kim Y, Heller A. Detection of approximately 10(3) copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O(2) as the substrate. Anal Chem. 2004;76:4093–7.

    Article  CAS  Google Scholar 

  25. Caruana DJ, Heller A. Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an18-base oligonucleotide on a 7-mm-diameter microelectrode. J Am Chem Soc. 1999;121:769–74.

    Article  CAS  Google Scholar 

  26. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol. 2001;19:253–7.

    Article  CAS  Google Scholar 

  27. Shimron S, Wang F, Orbach R, Willner I. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem. 2012;84:1042–8.

    Article  CAS  Google Scholar 

  28. Chai Y, Tian D, Wang W, Cui H. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin–streptavidin system. Chem Commun. 2010;46:7560–2.

    Article  CAS  Google Scholar 

  29. Zhou X, Xing D, Zhu D, Jia L. Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Anal Chem. 2009;81:255–61.

    Article  CAS  Google Scholar 

  30. Authier L, Grossiord C, Brossier P, Limoges B. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem. 2001;73:4450–6.

    Article  CAS  Google Scholar 

  31. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA. 2004;101:15275–8.

    Article  CAS  Google Scholar 

  32. Huang J, Wu Y, Chen Y, Zhu Z, Yang Y, Yang CJ, Wang K, Tan W. Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed. 2011;50:401–4.

    Article  CAS  Google Scholar 

  33. Song WQ, Zhu KL, Cao ZJ, Lau CW, Lu JZ. Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst. 2012;137:1396–401.

    Article  CAS  Google Scholar 

  34. Wang XZ, Jiang AW, Hou T, Li HY, Li F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens Bioelectron. 2015;70:324–9.

    Article  Google Scholar 

  35. Hao YL, Guo QQ, Wu HY, Guo LQ, Zhong LS, Wang J, Lin TR, Fu FF, Chen GN. Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron. 2014;52:261–4.

    Article  CAS  Google Scholar 

  36. Kojima E, Ohba Y, Kai M, Ohkura Y. Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides. Anal Chim Acta. 1993;280:157–62.

    Article  CAS  Google Scholar 

  37. Yu CY, Yin BC, Ye BC. A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun. 2013;49:8247–9.

    Article  CAS  Google Scholar 

  38. Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc. 2012;134:5064–7.

    Article  CAS  Google Scholar 

  39. Zuo X, Xia F, Xiao Y, Plaxco KW. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc. 2010;132:1816–8.

    Article  CAS  Google Scholar 

  40. Shi M, Zheng J, Tan Y, Tan J, Li J, Li Y, Li X, Zhou Z, Yang R. Ultrasensitive detection of single nucleotide polymorphism in human mitochondrial DNA utilizing ion-mediated cascade surface-enhanced Raman spectroscopy amplification. Anal Chem. 2015;87:2734–40.

    Article  CAS  Google Scholar 

  41. Ge J, Zhang LL, Liu SJ, Yu RQ, Chu X, Chen A. A highly sensitive target primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells. Anal Chem. 2014;86:1808–15.

    Article  CAS  Google Scholar 

  42. Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew Chem Int Ed. 2014;53:2389–93.

    Article  CAS  Google Scholar 

  43. Cao ZJ, Peng QW, Qiu X, Liu CY, Lu JZ. Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform. J Pharceutical Anal. 2011;1:159–65.

    Article  CAS  Google Scholar 

  44. Wang X, Lau CW, Kai M, Lu JZ. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst. 2013;138:2691–7.

    Article  CAS  Google Scholar 

  45. Cai S, Cao ZJ, Lau CW, Lu JZ. Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction. Analyst. 2014;139:6022–7.

    Article  CAS  Google Scholar 

  46. Su J, Zhang HJ, Jiang BY, Zheng HZ, Chai YQ, Yuan R, Xiang Y. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling. Biosens Bioelectron. 2011;29:184–8.

    Article  CAS  Google Scholar 

  47. Takalkar S, Baryeh K, Liu GD. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron. 2017;98:147–54.

    Article  CAS  Google Scholar 

  48. Zhong D, Yang KC, Wang YY, Yang XM. Dual-channel sensing strategy based on gold nanoparticles cooperating with carbon dots and hairpin structure for assaying RNA and DNA. Talanta. 2017;175:217–23.

    Article  CAS  Google Scholar 

  49. Peng QW, Cao ZJ, Lau CW, Kai M, Lu JZ. Aptamer-barcode based immunoassay for the instantaneous derivatization chemiluminescence detection of IgE coupled to magnetic beads. Analyst. 2011;136:140–7.

    Article  CAS  Google Scholar 

  50. Tang W, Wang D, Xu Y, Li N, Liu F. A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem Commun. 2012;48:6678–80.

    Article  CAS  Google Scholar 

  51. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–81.

    Article  CAS  Google Scholar 

  52. Taton TA, Lu G, Mirkin CA. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc. 2001;123:5164–5.

    Article  CAS  Google Scholar 

  53. Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc. 2004;126:5932–3.

    Article  CAS  Google Scholar 

  54. Feng X, Luoa XT, Hsing IM. Sensitive immobilization-free electrochemical DNA sensor based on isothermal circular strand displacement polymerization reaction. Biosens Bioelectron. 2012;35:230–4.

    Article  Google Scholar 

  55. Gao FL, Lei JP, Ju HX. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal Chem. 2013;85:11788–93.

    Article  CAS  Google Scholar 

  56. Zhang ZP, Zhou JY, Tang AA, Wu ZY, Shen GL, Yu RQ. Scanning electrochemical microscopy assay of DNA based on hairpin probe and enzymatic amplification biosensor. Biosens Bioelectron. 2010;25:1953–7.

    Article  CAS  Google Scholar 

  57. Zhao C, Wu L, Ren J, Qu X. A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using ligand-responsive G-quadruplex formation. Chem Commun. 2011;47:5461–3.

    Article  CAS  Google Scholar 

  58. Mei Z, Tang L. Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal Chem. 2017;89:633–9.

    Article  CAS  Google Scholar 

  59. Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens OL, Rubio-Retama J, Kanaras AG. Highly sensitive DNA sensor based on upconversion nanoparticles and graphene oxide. ACS Appl Mater Interfaces. 2015;7:12422–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21375025 and 21675030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, Y., Wang, X. et al. Polystyrene Microspheres Coupled with Hybridization Chain Reaction for Dual-Amplified Chemiluminescence Detection of Specific DNA Sequences. J. Anal. Test. 1, 306–314 (2017). https://doi.org/10.1007/s41664-017-0042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0042-4

Keywords

Navigation