Skip to main content
Log in

Unprecedented Two-Step Chemiluminescence of Polyamine-Functionalized Carbon Nanodots Induced by Fenton-Like System

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

We reported an unprecedented chemiluminescence (CL) behavior of polyamine-functionalized carbon dots induced by Fe3+–H2O2 Fenton-like system. The first-step CL intensity increased with the increasing of the concentration of H2O2 and Fe3+, when the Fe3+ concentration came to 10−3 M, the unprecedented two-step CL behavior appeared. The CL intensity of BPEI-CDs induced by Fenton-like system was about 10 times stronger than that of naked CDs. The possible two-step CL mechanism was speculated based on the photoluminescence spectra, CL emission spectra, and the effects of radical scavengers on the CL intensity. Radiative recombination of the injected holes by strong oxidant perferrate formed through Fe3+–H2O2 reaction and the ·OH generated from successive Fenton reaction with the thermally excited electrons was proposed, which further facilitate full understanding about the optical properties of carbon dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen H, Wang Q, Shen Q, et al. Nitrogen doped graphene quantum dots based long-persistent chemiluminescence system for ascorbic acid imaging. Biosens Bioelectron. 2017;91:878–87.

    Article  CAS  Google Scholar 

  2. Shah SNA, Li HF, Lin JM. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid. Talanta. 2017;153:23–8.

    Article  Google Scholar 

  3. Kong D, Yan F, Han Z, et al. Cobalt(II) ions detection using carbon dots as an sensitive and selective fluorescent probe. RSC Adv. 2016;72:67481–7.

    Article  Google Scholar 

  4. Xu X, Robert Ray GuY, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:1276–82.

    Google Scholar 

  5. Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed. 2007;34:6473–83.

    Article  Google Scholar 

  6. Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots. Chem Commun. 2009;25:3774–83.

    Article  Google Scholar 

  7. Zhou J, Booker Christina, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129:744–52.

    Article  CAS  Google Scholar 

  8. Liu S, Tian J, Wang L, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater. 2012;15:2037–45.

    Article  Google Scholar 

  9. Luo M, Hua YF, Liang YR, et al. Synthesis of novel beta-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. BiosensBioelectron. 2017;98:195–7.

    Article  CAS  Google Scholar 

  10. Shi LH, Li L, Li XF, et al. Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sens. Actuators B Chem. 2017;251:234–8.

    Article  CAS  Google Scholar 

  11. Khaidukov N, Zorenko T, Iskaliyeva A, et al. Synthesis and luminescent properties of prospective Ce3+ doped silicate garnet phosphors for white LED converters. J Lumin. 2017;192:328–9.

    Article  CAS  Google Scholar 

  12. Bharathi D, Krishna RH, Singh V, et al. One pot synthesis of C-dots and study on its interaction with nanoZnO through fluorescence quenching. J Lumin. 2017;190:328–37.

    Article  CAS  Google Scholar 

  13. Wang J, Li R, Zhang H, et al. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron. 2017;97:157–67.

    Article  CAS  Google Scholar 

  14. Lu Q, Wang H, Liu Y, et al. Graphitic carbon nitride nanodots: as reductant for the synthesis of silver nanoparticles and its biothiols biosensing application. Biosens Bioelectron. 2017;89:411–6.

    Article  CAS  Google Scholar 

  15. Zeng X, Wang Z, Meng N, et al. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection. Appl Catal B. 2017;202:33–9.

    Article  CAS  Google Scholar 

  16. Jang M, Song S, Ha H, et al. Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: an experimental evidence of localized sp2 carbon subdomain. Carbon. 2017;118:524–7.

    Article  CAS  Google Scholar 

  17. Dai B, Wu C, Lu Y, et al. Synthesis and formation mechanism of s-doped carbon dots from low-molecule-weight organics. J Lumin. 2017;190:108–17.

    Article  CAS  Google Scholar 

  18. Li J, Jiao Y, Feng L, et al. Highly N, P-doped carbon dots: rational design, photoluminescence and cellular imaging. Microchim Acta. 2017;184:2933–8.

    Article  CAS  Google Scholar 

  19. Ng YH, Chin SF, Pang SC, et al. The luminescence profile of carbon dots synthesized from α-cellulose under different acid hydrolysis conditions. Opt Mater. 2017;70:50–7.

    Article  CAS  Google Scholar 

  20. Li L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22:2971–9.

    Article  CAS  Google Scholar 

  21. Jovanovic SP, Markovic ZM, Syrgiannis Z, et al. Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. Mater Res. 2017;93:183–211.

    CAS  Google Scholar 

  22. Lin Z, Xue W, Chen H, et al. Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun. 2012;48:1051–3.

    Article  Google Scholar 

  23. Lin Z, Xue W, Chen H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83:8245–7.

    Article  CAS  Google Scholar 

  24. Jiang J, He Y, Li S, et al. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun. 2012;77:9634–43.

    Article  Google Scholar 

  25. Shi J, Lu C, Yan D, et al. High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot improved chemiluminescence in Fenton-like system. Biosens Bioelectron. 2013;45:58–67.

    Article  CAS  Google Scholar 

  26. Zhao L, Di F, Wang D, et al. Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale. 2013;5:2655–64.

    Article  CAS  Google Scholar 

  27. Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon. 2012;50:2810–6.

    Article  CAS  Google Scholar 

  28. Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem. 2012;84:6220–4.

    Article  CAS  Google Scholar 

  29. Zhao L, Geng F, Di F, et al. Polyamine-functionalized carbon nanodots: a novel chemiluminescence probe for selective detection of iron (III) ions. RSC Adv. 2014;4:45768–74.

    Article  CAS  Google Scholar 

  30. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  31. Chen SC. The important reaction of Inorganic Chemistry. 3rd ed. Science and Technology Press; 1994.

  32. Gao Y, Zhang Y, Yang M, et al. Comparison of hydroxyl radical production rates in H2O2 solution under homogeneous catalysis of Fe(III) or Fe(II). Environ Sci. 2006;27:305–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (2016YFA0203102), the Chinese Academy of Sciences (XDB14040100), and the National Natural Science Foundation of China (Nos. 21677152 and 21177138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixia Zhao or Liang-Hong Guo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, F., Zhao, L., Kang, Y. et al. Unprecedented Two-Step Chemiluminescence of Polyamine-Functionalized Carbon Nanodots Induced by Fenton-Like System. J. Anal. Test. 1, 315–321 (2017). https://doi.org/10.1007/s41664-017-0039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0039-z

Keywords

Navigation