Skip to main content
Log in

Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) substrates play important roles for the enhancement of inelastic scattering signals. Traditional substrates such as roughened electrodes and colloidal aggregates suffer from well-known signal reproducibility issues, whereas for current dominant two-dimensional planar systems, the hot spot distributions are limited by the zero-, one- or two-dimensional plane. The introduction of a three-dimensional (3D) system such as a pyramid geometry breaks the limitation of a single Cartesian SERS-active area and extends it into the z-direction, with the tip potentially offering additional benefits of strong field enhancement and high sensitivity. However, current 3D pyramidal designs are restricted to film deposition on prepared pyramid templates or self-assembly in pyramidal molds with spherical building blocks, hence limiting their SERS effectiveness. Here, we report on the fabrication of a new class of low cost and well-defined plasmonic nanoparticle pyramid arrays from different anisotropic shaped nanoparticles using combined top-down lithography and bottom-up self-assembly approach. These pyramids exhibit novel optical scattering properties that can be exploited for the design of reproducible and sensitive SERS substrate. The SERS intensity was found to decrease drastically in accordance with a power law function as the focal planes move from the apex of the pyramid structure towards the base. In comparison to sphere-based building blocks, pyramids assembled from anisotropic rhombic dodecahedral gold nanocrystals with numerous sharp tips exhibited the strongest SERS performance.

Graphical Abstract

Macroscale pyramidal array films with plasmonic tunability as a new class of SERS substrate for sensitive detection of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Anal Bioanal Chem. 2011;403:27–54.

    Article  Google Scholar 

  2. Chen Y, Si KJ, Sikdar D, Tang Y, Premaratne M, Cheng W. Adv Opt Mater. 2015;3:919–24.

    Article  CAS  Google Scholar 

  3. Si KJ, Guo P, Shi Q, Cheng W. Anal Chem. 2015;87:5263–9.

    Article  CAS  Google Scholar 

  4. Vo-Dinh T, Yan F, Wabuyele MB. J Raman Spectrosc. 2005;36:640–7.

    Article  CAS  Google Scholar 

  5. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Phys Rev Lett. 1997;78:1667–70.

    Article  CAS  Google Scholar 

  6. Lane LA, Qian X, Nie S. Chem Rev. 2015;115:10489–529.

    Article  CAS  Google Scholar 

  7. Schlücker S. Angew Chem Int Ed. 2014;53:4756–95.

    Article  Google Scholar 

  8. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ. Science. 1995;267:1629–32.

    Article  CAS  Google Scholar 

  9. Lee W, Lee SY, Briber RM, Rabin O. Adv Funct Mater. 2011;21:3424–9.

    Article  CAS  Google Scholar 

  10. Pingping Z, Shumin Y, Liansheng W, Jun Z, Zhichao Z, Bo L, Jun Z, Xuhui S. Nanotechnology. 2014;25:245301.

    Article  Google Scholar 

  11. Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW. Phys Chem Chem Phys. 2014;16:2224–39.

    Article  CAS  Google Scholar 

  12. Stiles PL, Dieringer JA, Shah NC, Duyne RPV. Annu Rev Anal Chem. 2008;1:601–26.

    Article  CAS  Google Scholar 

  13. Fan M, Andrade GFS, Brolo AG. Anal Chim Acta. 2011;693:7–25.

    Article  CAS  Google Scholar 

  14. Shi Q, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng W. ACS Nano. 2016;10:967–76.

    Article  CAS  Google Scholar 

  15. Liu H, Yang Z, Meng L, Sun Y, Wang J, Yang L, Liu J, Tian Z. J Am Chem Soc. 2014;136:5332–41.

    Article  CAS  Google Scholar 

  16. Zhang Q, Lee YH, Phang IY, Lee CK, Ling XY. Small. 2014;10:2703–11.

    Article  CAS  Google Scholar 

  17. Lee SY, Kim S-H, Kim MP, Jeon HC, Kang H, Kim HJ, Kim BJ, Yang S-M. Chem Mater. 2013;25:2421–6.

    Article  CAS  Google Scholar 

  18. Alexander, T. A. In Applications of surface-enhanced Raman spectroscopy (SERs) for biosensing: an analysis of reproducible, commercially available substrates. 2005; p. 600703.

  19. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, Lindquist NC, Oh S-H, Haynes CL. Phys Chem Chem Phys. 2011;13:11551–67.

    Article  Google Scholar 

  20. Yang J, Judson DR, Peter NC, Carlos AE, Jennings GK, Sharon MW. Nanotechnology. 2011;22:295302.

    Article  Google Scholar 

  21. Perney NMB, García de Abajo FJ, Baumberg JJ, Tang A, Netti MC, Charlton MDB, Zoorob ME. Phys. Rev. B. 2007;76:035426.

    Article  Google Scholar 

  22. Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM. Opt Express. 2006;14:847–57.

    Article  CAS  Google Scholar 

  23. Henzie J, Kwak E-S, Odom TW. Nano Lett. 2005;5:1199–202.

    Article  CAS  Google Scholar 

  24. Xu Z, Jiang J, Gartia MR, Liu GL. J Phys Chem C. 2012;116:24161–70.

    Article  CAS  Google Scholar 

  25. Chao B-K, Cheng H-H, Nien L-W, Chen M-J, Nagao T, Li J-H, Hsueh C-H. Appl Surf Sci. 2015;357(Part A):615–21.

    Article  CAS  Google Scholar 

  26. Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA, Granero P, Ferré-Borrull J, Alvarez R, Pallares J, Fery A, de Lera AR, Marsal LF, Alvarez-Puebla RA. Angew Chem Int Ed. 2013;52:6459–63.

    Article  CAS  Google Scholar 

  27. Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H. RSC Adv. 2015;5:83899–905.

    Article  CAS  Google Scholar 

  28. Zhang C, Jiang SZ, Yang C, Li CH, Huo YY, Liu XY, Liu AH, Wei Q, Gao SS, Gao XG, Man BY. Sci. Rep. 2016;6:25243.

    Article  CAS  Google Scholar 

  29. Xu Z, Wu H-Y, Ali SU, Jiang J, Cunningham BT, Liu GL. NANOP. 2011;5:053526-053526-053511.

    Google Scholar 

  30. Zhang C, Man BY, Jiang SZ, Yang C, Liu M, Chen CS, Xu SC, Qiu HW, Li Z. Appl Surf Sci. 2015;347:668–72.

    Article  CAS  Google Scholar 

  31. Ferchichi A, Laariedh F, Sow I, Gourgon C, Boussey J. Microelectron Eng. 2015;140:52–5.

    Article  CAS  Google Scholar 

  32. Lin W-C, Liao L-S, Chen Y-H, Chang H-C, Tsai DP, Chiang H-P. Plasmonics. 2010;6:201–6.

    Article  Google Scholar 

  33. Chen J, Shen B, Qin G, Hu X, Qian L, Wang Z, Li S, Ren Y, Zuo L. J Phys Chem C. 2012;116:3320–8.

    Article  CAS  Google Scholar 

  34. Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z. Angew Chem Int Ed. 2011;50:1593–6.

    Article  CAS  Google Scholar 

  35. Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng W. Nanoscale. 2015;7:2862–8.

    Article  CAS  Google Scholar 

  36. Gosálvez MA, Nieminen RM. New J Phys. 2003;5:100.

    Article  Google Scholar 

  37. Sparacin DK, Spector SJ, Kimerling LC. J Lightwave Technol. 2005;23:2455.

    Article  CAS  Google Scholar 

  38. Johnson PB, Christy RW. Phys Rev B. 1972;6:4370–9.

    Article  CAS  Google Scholar 

  39. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M. Nanoscale Res Lett. 2013;8:1–5.

    Article  Google Scholar 

  40. Sikdar D, Zhu W, Cheng W, Premaratne M. Plasmonics. 2015;10:1663–73.

    Article  CAS  Google Scholar 

  41. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G. J Am Chem Soc. 2009;131:697–703.

    Article  CAS  Google Scholar 

  42. Vernon KC, Davis TJ, Scholes FH, Gómez DE, Lau D. J Raman Spectrosc. 2010;41:1106–11.

    Article  CAS  Google Scholar 

  43. Wang Y, Lu N, Wang W, Liu L, Feng L, Zeng Z, Li H, Xu W, Wu Z, Hu W, Lu Y, Chi L. Nano Res. 2013;6:159–66.

    Article  CAS  Google Scholar 

  44. Oo SZ, Siitonen S, Kontturi V, Eustace DA, Charlton MDB. Opt Express. 2016;24:724–31.

    Article  CAS  Google Scholar 

  45. Lindquist NC, Nagpal P, Lesuffleur A, Norris DJ, Oh S-H. Nano Lett. 2010;10:1369–73.

    Article  CAS  Google Scholar 

  46. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ. Anal Methods. 2014;6:9116–23.

    Article  CAS  Google Scholar 

  47. Boyack R, Le Ru EC. Phys Chem Chem Phys. 2009;11:7398–405.

    Article  CAS  Google Scholar 

  48. McLellan JM, Siekkinen A, Chen J, Xia Y. Chem Phys Lett. 2006;427:122–6.

    Article  CAS  Google Scholar 

  49. Ko H, Singamaneni S, Tsukruk VV. Small. 2008;4:1576–99.

    Article  CAS  Google Scholar 

  50. Haynes CL, Van Duyne RP. J Phys Chem B. 2003;107:7426–33.

    Article  CAS  Google Scholar 

  51. Botti S, Cantarini L, Almaviva S, Puiu A, Rufoloni A. Chem Phys Lett. 2014;592:277–81.

    Article  CAS  Google Scholar 

  52. Jiwei Q, Yudong L, Ming Y, Qiang W, Zongqiang C, Wudeng W, Wenqiang L, Xuanyi Y, Jingjun X, Qian S. Nanoscale Res Lett. 2013;8:1–6.

    Article  Google Scholar 

Download references

Acknowledgements

M.P., and W.L.C. acknowledge Discovery Grants DP110100713, DP140100883, DP120100170, and DP140100052. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). D. Sikdar acknowledges Engineering and Physical Sciences Research Council UK’s funding scheme EP/L02098X/1. The manuscript was written through contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8581 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Si, K.J., Guo, P. et al. Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS. J. Anal. Test. 1, 335–343 (2017). https://doi.org/10.1007/s41664-017-0033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0033-5

Keywords

Navigation